search for



Evaluation of Muscle Damage by Central Fatigue Using Tensiomyography
Korean J Sports Med 2020;38:238-241
Published online December 1, 2020;  https://doi.org/10.5763/kjsm.2020.38.4.238
© 2020 The Korean Society of Sports Medicine.

Jung Hoon Chai1, Sang-Won Bae2

1Department of Sports Medicine, Soonchunhyang University, Asan,
2Department of Orthopaedics, Sunsoochon Hospital, Seoul, Korea
Correspondence to: Sang-Won Bae
Department of Orthopaedics, Sunsoochon Hospital, 17 Olympicro 4-gil, Songpa-gu, Seoul 05572, Korea
Tel: +82-2-431-3379, Fax: +82-2-6925-3901
E-mail: yodeo@naver.com
Received July 31, 2020; Revised September 16, 2020; Accepted October 6, 2020.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
This study compared muscle function pre- and post-central fatigue caused by a marathon, using maximal displacement (Dm), which indicates muscular stiffness in tensiomyography (TMG) results. Blood and noninvasive TMG test were performed on the 1st, 3rd, and 5th days before and immediately after the marathon. The muscles assessed were the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), tibialis anterior, gastrocnemius lateralis, and gastrocnemius medialis. Lactate dehydrogenase levels (lactate dehydrogenase) increased sharply immediately after the competition and decreased to the pre-competition level after 5 days. Dm was the highest immediately post-competition at BF, ST, VL, VM, and RF muscles, with a tendency to decrease to pre-competition levels after 1 day. The application of TMG to identify muscle changes in central fatigue studies may be appropriate in the proximal region rather than in the distal region.
Keywords : Lactate dehydrogenase, Marathon, Muscle, Myalgia, Neurologic
꽌 濡

洹쇳뵾濡쒕뒗 洹쇱쑁쓽 諛섎났쟻씤 吏곸엫쑝濡 씤븯뿬 洹쇱쑁쓽 닔쓽쟻씤 뒫젰씠 媛먯냼릺뒗 쁽긽쑝濡1-3, 떊寃쎄렐 젒빀遺쓽 湲곕뒫씠 빟솕릺뼱 옒씠 媛먯냼븯뒗 留먯큹 뵾濡쒖 以묒텛떊寃쎄퀎쓽 슫룞떊寃 빟솕濡 옒씠 媛먯냼븯뒗 以묒텛 뵾濡쒖쓽 몢 媛吏 긽솴쓣 룷븿븳떎4. 洹쇱쑁쓽 솢꽦룄瑜 룊媛븯湲 쐞븳 吏곸엫 샊 룞옉쓣 슂援ы븯뿬 寃궗븯뒗 electromyography (EMG) 諛⑸쾿 以묒텛떊寃쎄퀎쓽 뵾濡쒓 쑀諛쒕맂 뵾뿕옄뿉寃 쟻슜븯湲곗뿉뒗 뼱젮씠 엳쓣 寃껋씠떎. 鍮꾩묠뒿쟻씤 洹쇱쑁쓽 寃궗諛⑸쾿쑝濡 냼媛쒕릺怨 엳뒗 tensiomyography (TMG)뒗 쟾湲 옄洹뱀쓣 넻빐 븞젙맂 뵾뿕옄쓽 洹쇱닔異뺤쓣 쑀룄븯뿬 洹쇱쑁뿉꽌 굹굹뒗 諛섏쓳쓣 遺꾩꽍븯뒗 寃껋씠硫, 媛 洹쇱쑁 遺쐞뿉꽌 媛옣 넂寃 넖븘삤瑜 洹쇰같쐞瑜 痢≪젙븯뒗 寃껋쓣 썝移숈쑝濡 븳떎. 몴쟻씤 寃곌낵 蹂씤 씠룞 蹂쐞(maximal displacement [Dm])濡쒖꽌 쟾湲곗쟻 옄洹뱀뿉 쓽빐 吏곸씤 洹쇱쑁쓽 씠룞嫄곕━瑜 쓽誘명븯硫, 洹쇱쑁쓽 媛뺤쭅룄 옣젰怨쇱쓽 긽愿 愿怨꾧 넂븘 洹쇱쑁쓽 넀긽 샊 洹쇱쑁쓽 湲곕뒫쓣 룊媛븯뒗 蹂씤쑝濡 꽕紐낇븯怨 엳떎5. TMG뒗 EMG 諛⑸쾿怨쇰뒗 떎瑜닿쾶 븞젙맂 긽깭뿉꽌 痢≪젙븷 닔 엳쑝硫, 씠룞씠 媛꾪렪븯뿬 쁽옣뿉꽌 돺寃 쟻슜븷 닔 엳떎뒗 옣젏쓣 媛吏怨 엳떎.

Garcia-Manso 벑6 泥좎씤3醫 꽑닔뱾쓣 긽쑝濡 寃쎄린 쟾썑쓽 꽇떎由ш낍洹(rectus femoris [RF])怨 꽇떎由щ몢媛덈옒洹(biceps femoris [BF])쓽 蹂솕瑜 鍮꾧탳븯뿬 寃쎄린 吏곹썑 Dm씠 怨쇰룄븯寃 利앷븯뒗 寃곌낵瑜 蹂닿퀬븯怨, Giovanelli 벑7 뼵뜒 留덈씪넠뿉 李몄뿬븳 꽑닔뱾쓽 媛履쎈꼻洹(vastus lateralis [VL])뿉꽌 寃쎄린吏곹썑 뜙 寃쎌쭅릺뼱, Dm씠 利앷븯뒗 寃곌낵瑜 젣떆븯뿬, 以묒텛떊寃쎌쓽 洹쇳뵾濡쒖뿉 쓽빐 TMG쓽 Dm씠 利앷븷 닔 엳떎뒗 醫낇빀쟻씤 寃곕줎쓣 솗씤븷 닔 엳뿀떎. 洹몃윭굹 씠윭븳 꽑뻾끉臾몄뿉꽌뒗 씪諛섏쟻쑝濡 洹쇱쑁쓽 넀긽 샊 뵾濡쒕 룊媛븯뒗 깮솕븰쟻 吏몴濡쒖꽌 紐낇솗븳 젙蹂대 젣怨듯븯吏 紐삵뻽쑝硫8, 寃궗遺쐞룄 긽씠븯寃 痢≪젙릺뿀떎.

븳렪, 以묒텛 뵾濡쒕뒗 以묎컯룄 닔以뿉꽌 옣湲곌컙쓽 솢룞 샊 슫룞쑝濡 쑀諛쒕릺뒗 寃껋씠硫, 以묒옣嫄곕━ 샊 留덈씪넠怨 媛숈 醫낅ぉ뿉꽌 굹궇 닔 엳떎怨 븯떎4,5. 뵲씪꽌, 蹂 뿰援щ뒗 肄붿뒪留덈씪넠 寃쎄린李몄뿬 썑 븯吏洹쇱쑁 쟾泥댁뿉꽌 굹굹뒗 洹쇱쑁뱾쓽 뵾濡쒕 TMG濡 寃궗븯뿬, 깮솕븰쟻 吏몴 鍮꾧탳븿쑝濡쒖뜥 以묒텛 뵾濡쒖쓽 쁺뼢쓣 뜑 留롮씠 諛쏅뒗 洹쇱쑁쓣 솗씤빐蹂닿퀬옄 븯떎.

利 濡

씠 뿰援щ뒗 닚泥쒗뼢븰援 뿰援ъ쑄由ъ쐞썝쉶쓽 듅씤쓣 諛쏆븘 吏꾪뻾븯떎(IRB No. 1040875-201710-BM-044). 뵾뿕옄뒗 肄붿뒪留덈씪넠寃쎄린쓽 3쉶 씠긽쓽 셿二쇨꼍뿕씠 엳怨 洹쇨낏寃⑷퀎 吏덊솚 벑씠 뾾뒗 嫄닿컯븳 1紐낆쓽 뵾뿕옄濡, 떊옣 175 cm, 泥댁쨷 90 kg씠뿀떎. 뵾뿕옄뒗 留ㅽ빐 媛쓣뿉 媛쒖턀릺뼱 꽌슱 옞떎뿉꽌 寃쎄린룄 꽦궓 씪濡 떖由щ뒗 以묒븰씪蹂대쭏씪넠(꽠뵪 6°–10°쓽 留묒 궇뵪)뿉 李몄뿬븯쑝硫, 寃쎄린 쟾궇, 寃쎄린 吏곹썑, 1씪, 3씪, 5씪源뚯 珥 5쉶뿉 嫄몄퀜 梨꾪삁怨 TMG 寃궗瑜 떎떆븯떎. 梨꾪삁 젙以묒<젙留μ뿉꽌 梨꾩랬븯뿬 뾽泥댁뿉 쓽猶고븯怨, 삁븸 蹂씤쑝濡쒕뒗 洹쇱넀긽쓽 吏몴씤 lactate dehydrogenase (LDH), creatine phosphokinase (CPK), creatine kinase-myoglobin (CK-MB)쓣 꽑젙븯떎8. TMG쓽 寃궗諛⑸쾿 癒쇱 痢≪젙븯怨좎옄 븯뒗 洹쇱쑁遺쐞뿉꽌 媛옣 넂寃 移섏넖븘 엳뒗 洹쇰같쐞뿉 꽱꽌瑜 쐞移섏떆궎怨, 꽱꽌瑜 以묒떖쑝濡 빟 2–3 cm 씠寃⑹떆耳 쟾洹뱀쓣 遺李⑹떆耳곕떎. 理쒖큹쓽 쟾湲곗옄洹뱀 20 mA뿉꽌 떆옉븯怨, 10 mA뵫 利앷떆耳 洹쇰같쐞쓽 씠룞蹂쐞씤 Dm씠 理쒕닔移섏뿉 씠瑜 븣源뚯 吏꾪뻾븯떎. 씠븣, 寃곌낵 蹂씤 洹쇳뵾濡쒖 긽愿愿怨꾧 넂 Dm쓣 룊媛븯떎. 痢≪젙遺쐞뒗 媛履쎈꼻洹(VL), 븞履쎈꼻洹(vastus medialis [VM]), 꽇떎由ш낍洹(RF), 꽇떎由щ몢媛덈옒洹(BF), 諛섑옒以꾨え뼇洹(semitendinosus [ST]), 쇅뿉 븵젙媛뺢렐(tibialis anterior [TA]), 媛履쎌옣뵶吏洹(gastrocnemius lateralis [GL]), 븞履쎌옣뵶吏洹(gastrocnemius medialis [GM])쓣 뼇履쎌뿉꽌 紐⑤몢 떎떆븯쑝硫, 슦꽭꽦 떎由ъ쓽 슚怨쇰 諛곗젣븯湲 쐞빐 Dm 뼇履쎈떎由ъ뿉꽌 굹삩 寃곌낵쓽 빀쑝濡 遺꾩꽍븯떎6. 씠 븣, 룞씪븳 遺쐞쓽 諛섎났痢≪젙뿉 븳 삤李⑤ 以꾩씠湲 쐞빐 씤泥댁슜 렂쑝濡 몴떇쓣 떎떆븯쑝硫, 留덉留 5李 寃궗 븣源뚯 쑀吏맆 닔 엳룄濡 닔떆濡 뜤移좎쓣 븯떎.

1. 삁븸 諛 TMG 寃곌낵 遺꾩꽍

留덈씪넠 쟾썑 諛 쉶蹂듦린 5씪源뚯쓽 삁븸遺꾩꽍 寃곌낵뒗 Fig. 1뿉 굹궡뿀쑝硫, 媛 븯吏 洹쇱쑁뿉꽌쓽 Dm쓽 蹂솕뒗 Figs. 24뿉 젣떆븯떎. LDH뒗 留덈씪넠寃쎄린 吏곹썑뿉꽌 媛옣 넂寃 굹궗쑝硫, CPK CK-MB뒗 寃쎄린 떎쓬궇 쉶蹂 1씪李⑥뿉꽌 媛옣 넂븯떎. 쉶蹂 5씪吏몄뿉꽌뒗 LDH, CPK, CK-MB 紐⑤몢 寃쎄린쟾 닔以쑝濡 룎븘媛뒗 寃껋쓣 솗씤븷 닔 엳뿀떎(Fig. 1). 꽇떎由щ뮘洹쇱쑁쓽 BF, ST뒗 留덈씪넠寃쎄린 吏곹썑뿉꽌 넂寃 굹궗쑝硫, 쉶蹂 1씪吏몃꽣 寃쎄린쟾쓽 닔以씠굹 洹 씠븯濡 媛먯냼븯떎(Fig. 2).

Fig. 1. Blood analysis. (A) Lactate dehydrogenase (LDH). (B) Creatine phosphokinase (CPK). (C) Creatine kinase-myoglobin (CK-MB). D1: 1 day later, D3: 3 days later, D5: 5 days later.
Fig. 2. Maximal displacement of hamstring. (A) Biceps femoris (BF). (B) Semitendinosus (ST). D1: 1 day later, D3: 3 days later, D5: 5 days later.
Fig. 4. Maximal displacement of lower leg. (A) Tibialis anterior (TA). (B) Gastrocnemius lateralis (GL). (C) Gastrocnemius medialis (GM). D1: 1 day later, D3: 3 days later, D5: 5 days later.

꽇떎由щ꽕媛덈젅洹쇱쓽 VL, VM, RF뒗 留덈씪넠寃쎄린 吏곹썑뿉꽌 넂寃 굹궗쑝硫, 쉶蹂 1씪吏몃꽣 寃쎄린쟾쓽 닔以쑝濡 媛먯냼븯떎(Fig. 3). TA쓽 Dm 寃쎄린 쟾뿉꽌 媛옣 넂븯怨, 寃쎄린썑 쉶蹂 1씪李⑥뿉꽌 媛옣 궙븯쑝硫, 쉶蹂 3씪李⑥뿉 利앷븯쑝굹, 쉶蹂 5씪李⑥뿉룄 寃쎄린쟾 닔以쑝濡 利앷릺吏 븡븯떎. GL쓽 Dm 寃쎄린썑 1씪李⑥뿉꽌 媛옣 궙븯怨, 쉶蹂 3씪李⑥뿉 寃쎄린쟾 닔以蹂대떎 利앷븯뿬, 5씪李④퉴吏 쑀吏릺뒗 寃껋쑝濡 蹂댁떎. GM쓽 Dm 寃쎄린 吏곹썑뿉 寃쎄린쟾蹂대떎 빟媛 利앷븯怨, 쉶蹂 1씪李⑥ 3씪李④퉴吏 媛먯냼븯떎, 5씪李⑥뿉꽌 빟媛 利앷릺뒗 寃껋쓣 솗씤븷 닔 엳뿀떎(Fig. 4).

Fig. 3. Maximal displacement of quadriceps. (A) Vastus lateralis (VL). (B) Vastus medialis (VM). (C) Rectus femoris (RF). D1: 1 day later, D3: 3 days later, D5: 5 days later.
怨 李

씠 뿰援щ뒗 洹쇱쑁쓽 넀긽 샊 뵾濡쒖쓽 깮솕븰쟻씤 吏몴濡쒖꽌 TMG쓽 二쇱슂 蹂씤씤 Dm怨쇱쓽 寃쏀뼢꽦쓣 鍮꾧탳빐蹂닿퀬, 留덈씪넠怨 媛숈 以묒텛 뵾濡쒖뿉 쓽빐 뜑슧 쁺뼢쓣 諛쏅뒗 븯吏쓽 洹쇱쑁쓣 솗씤빐蹂닿퀬옄 븯떎. 留먯큹 뵾濡쒓 吏㏃ 떆媛꾩뿉 怨좉컯룄쓽 슫룞뿉 쓽빐 理쒕 닔異뺣뒫젰씠 媛먯냼븯뒗 寃껉낵뒗 떎瑜닿쾶 以묒텛 뵾濡쒕뒗 湲멸쾶 吏냽릺怨 諛섎났릺뒗 吏곸엫뿉 쓽빐 諛쒖깮릺硫, 留덈씪넠怨 媛숈 以묎컯룄 슫룞 긽솴뿉꽌 굹굹뒗 寃껋쑝濡 븣젮졇 엳떎4. LDH뒗 젚궛쓽 궛솕瑜 珥됱쭊떆궎뒗 뿭븷쓣 븯湲곗뿉 떎젣濡 뵾濡쒖뿰援ъ뿉꽌 젚궛쓣 룊媛븯뒗 씤옄濡 궗슜릺怨 엳떎9. 留덈씪넠뿉 쓽븳 뵾濡쒕뒗 LDH媛 寃쎄린吏곹썑 利앷븯硫, CK 諛 CK-MB뒗 寃쎄린 썑 24떆媛 븣뿉 利앷븯뒗 寃껋쑝濡 븣젮졇 엳쑝硫10, 씠뒗 蹂 뿰援ъ쓽 삁븸蹂씤 寃곌낵媛 쑀궗븳 뙣꽩쑝濡 굹궃 寃껋쓣 솗씤븷 닔 엳뿀떎.

蹂 뿰援щ뒗 Garcia-Manso 벑6쓽 寃곌낵젣떆 諛⑸쾿쓣 李멸퀬븯뿬 슦꽭꽦 떎由ъ쓽 슚怨쇰 諛곗옱븯湲 쐞빐 뼇履 떎由ъ쓽 Dm쓣 빀븳 媛믪쓣 寃곌낵濡 굹궗뿀떎. 꽇떎由щ뮘洹쇱쑁(BF, ST)怨 꽇떎由щ꽕媛덈옒洹(VL, RF, VM)뿉꽌뒗 LDH쓽 寃쏀뼢꽦怨 쑀궗븯寃 寃쎄린 吏곹썑뿉꽌 利앷븯쑝硫, 24떆媛 씠썑뿉 寃쎄린쟾쓽 긽깭濡 媛먯냼릺뒗 뼇긽쓣 솗씤븷 닔 엳뿀떎. Giovanelli 벑7 寃쎄린 吏곹썑 Dm씠 利앷븯뒗 쁽긽 洹쇱쑁쓽 寃쎌쭅룄媛 媛먯냼릺뒗 긽솴쑝濡 꽕紐낇븯뒗뜲, 씠뒗 以묎컯룄 씠븯쓽 옣湲곌컙 씪쉶꽦 슫룞씤 留덈씪넠뿉 쓽빐 洹쇱쑁쓽 닔異뺣젰씠 븯릺뼱 깂젰씠 媛먯냼븳 寃껋씠씪 삁긽븯怨 엳떎. 諛섎㈃, 븯눜洹쇱쓽 TA, GL, GM뿉꽌뒗 삁븸蹂씤怨 쑀궗븳 뙣꽩쓣 李얠븘蹂 닔 뾾뿀떎.

蹂 뿰援щ뒗 꽑뻾뿰援щ 湲곕컲쑝濡 留덈씪넠쑝濡쒖꽌 以묒텛뵾濡쒕 쑀諛쒗븯怨, 씠瑜 鍮꾩묠뒿쟻씤 洹쇱쑁쓽 痢≪젙諛⑸쾿씤 TMG濡 삁痢≫븷 닔 엳쓣吏瑜 솗씤븯怨좎옄 븯吏留, 떒씪 뵾뿕옄쑝硫, 以묒텛뵾濡 룊媛 蹂씤쓣 삁븸怨 TMG 寃곌낵留뚯쑝濡 젣떆븳 젣븳젏쓣 媛吏怨 엳떎. 뵲씪꽌 異뷀썑 뿰援ъ뿉꽌뒗 異⑸텇븳 궗濡닔瑜 솗蹂댄븿怨 룞떆뿉 以묒텛뵾濡쒖 愿젴맂 떎뼇븳 蹂씤쓣 쟻슜븯뿬 룊媛븷 븘슂媛 엳寃좊떎.

뿰援ъ쓽 寃곌낵瑜 젙由ы븯硫, 留덈씪넠怨 媛숈 洹뱀떖븳 슫룞 以묒텛 뵾濡쒕 쑀諛쒗븯吏留, 씠뒗 븯눜洹쇰낫떎뒗 긽쟻쑝濡 洹쇱쑁쓽 궗씠利덇 뜑 겕怨, 옒쓣 諛쒗쐶븯뒗 뿀踰낆洹쇱뿉꽌 몢뱶윭吏寃 굹굹뒗 寃껋쓣 븣 닔 엳뿀떎. 븘留덈룄 以묒텛 뵾濡쒕뒗 떊泥댁쨷떖뿉 媛源앷퀬 궗씠利덇 겙 洹쇱쑁뿉 二쇰줈 쁺뼢쓣 誘몄튂硫, 諛섎濡 留먮떒遺쐞쓽 洹쇱쑁 以묒텛 뵾濡쒖쓽 쁺뼢쓣 뜙 諛쏄굅굹, 쉶蹂듭냽룄媛 鍮좊 닔 엳떎뒗 삁긽쓣 븷 닔 엳寃좊떎. 뵲씪꽌, 以묒텛 뵾濡쒖뿉 쓽븳 洹쇱넀긽 뿰援ъ뿉꽌뒗 留먮떒遺쐞쓽 洹쇱쑁蹂대떎뒗 以묒떖遺쓽 洹쇱쑁쓣 룊媛븯뒗 寃껋씠 뜑 쟻빀븷 寃껋쑝濡 蹂댁씤떎.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Conceptualization: SWB. Data curation: JHC. Formal analysis: JHC. Methodology: JHC. Project administration: JHC. Writing–original draft: JHC. Writing–review & editing: SWB.

References
  1. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 2008;88:287-332.
    Pubmed CrossRef
  2. Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol (1985) 1992;72:1631-48.
    Pubmed CrossRef
  3. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001;81:1725-89.
    Pubmed CrossRef
  4. Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (1985) 2017;122:1068-76.
    Pubmed CrossRef
  5. Simunic B, Degens H, Rittweger J, Narici M, Mekjavic IB, Pisot R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med Sci Sports Exerc 2011;43:1619-25.
    Pubmed CrossRef
  6. Garcia-Manso JM, Rodriguez-Ruiz D, Rodriguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J Sports Sci 2011;29:619-25.
    Pubmed CrossRef
  7. Giovanelli N, Taboga P, Rejc E, Simunic B, Antonutto G, Lazzer S. Effects of an uphill marathon on running mechanics and lower-limb muscle fatigue. Int J Sports Physiol Perform 2016;11:522-9.
    Pubmed CrossRef
  8. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med 2010;48:757-67.
    Pubmed CrossRef
  9. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A 1999;96:1129-34.
    Pubmed KoreaMed CrossRef
  10. Santos VC, Sierra AP, Oliveira R, et al. Marathon race affects neutrophil surface molecules: role of inflammatory mediators. PLoS One 2016;11:e0166687.
    Pubmed KoreaMed CrossRef