search for



Objective and Subjective Analysis of the Knee Joint Function Using Lower Extremity Assessment Protocol after Anterior Cruciate Ligament Reconstruction
Korean J Sports Med 2021;39:34-41
Published online March 1, 2021;  https://doi.org/10.5763/kjsm.2021.39.1.34
© 2021 The Korean Society of Sports Medicine.

Byong Hun Kim1,2, Hyung Gyu Jeon1,2, Jong Han Cheo3, Tae Kyu Kang1,2, Sae Yong Lee1,2

1Yonsei Institute of Sports Science and Exercise Medicine (YISSEM), Yonsei University, Seoul, 2Department of Physical Education, Yonsei University, Seoul, 3Graduate School of Education, Yonsei University, Seoul, Korea
Correspondence to: Sae Yong Lee
Yonsei Institute of Sports Science and Exercise Medicine (YISSEM), Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Tel: +82-2-2123-6189, Fax: +82-2-2123-8375, E-mail: sylee1@yonsei.ac.kr
Received January 14, 2021; Revised February 9, 2021; Accepted February 22, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Purpose: Anterior cruciate ligament reconstruction (ACLR) is one of the most common procedures in sports medicine. It is important for patients to determine whether or not to return to the pre-operative state after the ACRL. This study is to evaluate the objective and subjective analysis of the knee joint function and to compare between injured knee and non-injured knee in those with ACLR.
Methods: This cross-sectional study recruited 15 individuals with ACLR using autograft (age, 27.87짹4.10 years; height, 172.56짹4.81 cm; weight, 75.51짹13.03 kg; time to surgery, 27.11짹14.03 months). International Knee Document Committee subjective knee evaluation form and Lower Extremity Assessment Protocol (LEAP) including muscle strength, static and dynamic postural control, functional task was used to assess the knee joint function. Deficit ratio between injured knee and non-injured knee and independent t-test were used for analysis.
Results: Injured knee has significantly decreased isokinetic extension strength (90째/sec), isometric flexion strength and one-leg hopping distance (p< 0.05).
Conclusion: Although individuals who successfully returned to play (RTP) did not experience subjective dysfunction and pain, there are items of LEAP that indicates deficit ratio between injured knee and non-injured knee. Therefore, when considered whether and when to RTP, it is very important to assess not only subjective dysfunction and pain but also whether the patient has recovered to a level similar to that of the non-injured knee in various aspects of the knee joint.
Keywords : Return to sports, Muscle strength, Physical functional performance, Anterior cruciate ligament reconstruction
꽌 濡

臾대쫷愿젅 넀긽 뒪룷痢 솢룞 떆 諛쒖깮븯뒗 븯吏 洹쇨낏寃⑷퀎 긽빐 以 媛옣 鍮덈쾲븯寃 諛쒖깮븯뒗 쑀삎씠硫, 洹 以 쟾諛⑹떗옄씤(anterior cruciate ligament, ACL) 넀긽씠 媛옣 넂 鍮꾩쑉쓣 李⑥븳떎1. ACL 넀긽 븯吏 洹쇰젰쓽 빟솕 諛 쐞異뺢낵 븿猿 愿젅 遺덉븞젙꽦쓣 빞湲고븯뿬 吏곸엫 湲곕뒫쓣 젣븳븯怨2,3, 諛섏썡긽 뿰怨⑥쓽 눜뻾씠 媛냽솕릺뒗 벑쓽 2李⑥쟻 臾몄젣瑜 諛쒖깮떆궎뒗 寃껋쑝濡 蹂닿퀬맂떎4. 삉븳, ACL 넀긽쑝濡 씤븳 뒪룷痢 李몄뿬 젣븳 떖由ъ쟻 슦슱媛, 썕젴 以묐떒, 떆媛꾩쟻 諛 湲덉쟾쟻 넀떎 벑쓽 臾몄젣瑜 빞湲고븯뿬 쟾諛섏쟻씤 궣쓽 吏덉쓣 媛먯냼떆궎湲 븣臾몄뿉5 議곗냽븯怨 쟻젅븳 遺긽 愿由ш 븘슂븯떎. 뵲씪꽌 떎닔쓽 ACL 넀긽 솚옄뱾 愿젅 媛룞踰붿쐞, 洹쇰젰, 洹좏삎뒫젰 벑쓣 넀긽 쟾 긽깭濡 쉶蹂듯븯뿬 怨좉컯룄 닔以쓽 뒪룷痢좊줈 蹂듦븯湲 쐞빐 ACL 옱嫄댁닠(ACL reconstruction, ACLR)쓣 諛쏄퀬 엳떎6,7.

ACLR 媛옣 醫뗭 닔닠쟻 移섎즺 諛⑸쾿 以 븯굹엫뿉룄 遺덇뎄븯怨, 넀긽쑝濡 씤빐 諛쒖깮맂 愿젅 遺덉븞젙꽦 諛 뼇痢 븯吏쓽 鍮꾨移 臾몄젣瑜 紐⑤몢 빐寃고븯湲 뼱젮슫 寃껋쑝濡 蹂댁씤떎8. ACL씠 넀긽맂 臾대쫷愿젅 嫄댁륫뿉 鍮꾪빐 洹쇱쑁쓽 옒, 吏덈웾, 湲곕뒫 벑씠 紐⑤몢 媛먯냼븯怨9,10, 鍮꾩젙긽쟻 吏곸엫 뙣꽩씠 굹궓쑝濡쒖뜥 愿젅뿉 쟻슜릺뒗 遺븯媛 蹂솕맂떎11. 씠윭븳 솚痢↔낵 嫄댁륫 궗씠쓽 鍮꾨移 洹쇱떊寃 議곗젅 뒫젰쓽 媛먯냼瑜 빞湲고븯怨 ACL 옱넀긽 쐞뿕 슂씤쑝濡 옉슜븷 닔 엳湲 븣臾몄뿉12,13, 넀긽 吏곹썑肉먮쭔 븘땲씪 닔닠쟻 移섎즺 썑뿉룄 泥닿퀎쟻씤 옱솢 봽濡쒓렇옩씠 븘닔쟻쑝濡 닔뻾릺뼱빞 븳떎. 肉먮쭔 븘땲씪 닔닠쟻 移섎즺 옱솢 봽濡쒓렇옩 떎떆 썑, ACLR쓣 떎떆븳 솚옄뒗 臾대쫷愿젅쓽 洹쇰젰, 젙쟻 洹좏삎 뒫젰, 湲곕뒫꽦 뒫젰 벑 떎뼇븳 痢〓㈃뿉꽌 젙긽쟻쑝濡 쉶蹂듬릺뿀뒗吏 룊媛븯뒗 怨쇱젙 삉븳 諛섎뱶떆 븘슂븯떎.

遺긽 룊媛 떆 二쇨쟻쑝濡 寃쏀뿕븯뒗 湲곕뒫遺쟾, 넻利, 솢룞 닔以 벑怨 媛숈 솚옄 以묒떖 寃곌낵(patient-oriented outcome)뒗 媛쒖씤쓽 쁽옱 긽깭 쉶蹂 젙룄瑜 媛뒥븷 닔 엳湲 븣臾몄뿉 二쇰ぉ븷 븘슂媛 엳떎. 洹 以 International Knee Document Committee (IKDC)쓽 二쇨쟻 臾대쫷 꽕臾몄뒗 湲곕뒫遺쟾 諛 넻利 諛쒖깮 愿젴 臾명빆쑝濡 援ъ꽦릺뼱 엳뼱, 臾대쫷愿젅 넀긽 솚옄媛 씪긽깮솢怨 뒪룷痢 솢룞 以 뒓겮뒗 利앹긽쓣 媛앷솕븷 닔 엳뒗 룄援щ줈 꼸由 궗슜릺怨 엳떎. ACLR 솚옄뱾쓣 긽쑝濡 븳 꽑뻾뿰援щ뒗 IKDC 꽕臾몄쓣 솢슜븯뿬 닔닠 썑 떆媛꾩씠 吏궓뿉 뵲씪 쉶蹂 젙룄瑜 鍮꾧탳븯怨 씠瑜 뒪룷痢 蹂듦(return to play)쓽 湲곗 젣떆뿉 솢슜븯쑝硫14, 닔닠 썑 솚옄뱾쓽 利앹긽怨 湲곕뒫遺쟾쓣 굹궡뒗 媛옣 쑀슜븳 룄援щ줈 젣떆븯떎15. 洹몃윭誘濡 臾대쫷愿젅쓽 룄 諛 援쏀옒 洹쇱쑁쓽 벑냽꽦, 洹쇰젰, 벑泥숈꽦 洹쇰젰, 븳 諛 洹좏삎뒫젰, 李⑹ 삤瑜 젏닔 泥닿퀎(Landing Error Scoring System, LESS) 諛 븳 떎由 湲곕뒫 룞옉怨 媛숈 媛앷쟻씤 룊媛 吏몴 븿猿 IKDC 二쇨쟻 꽕臾몄瑜 궗슜븳떎硫 엫긽媛 솚옄 紐⑤몢뿉寃 쑀슜븳 젙蹂대 젣怨듯븷 닔 엳쓣 寃껋씠떎.

ACL 넀긽 옱遺긽瑜좎씠 넂怨, 嫄댁륫怨 솚痢 궗씠뿉 遺덇퇏삎쓣 珥덈옒븯뒗 쐞뿕슂씤쑝濡 蹂닿퀬맂떎. 뵲씪꽌 ACLR 썑 솚옄쓽 뒪룷痢 蹂듦 뿬遺 떆湲곕 寃곗젙븯湲 쟾뿉 떎諛⑸㈃쓽 룊媛 쟾臾멸쓽 異⑸텇븳 끉쓽媛 븘슂븯떎. 씠瑜 쐞빐 Difabio 벑16 씠쟾뿉 뼵湲됰맂 媛앷쟻씤 븯吏 룊媛 봽濡쒗넗肄(Lower Extremity Assessment Protocol, LEAP)쓣 깉濡寃 젣떆븯뿬 ACLR 씠썑 臾대쫷愿젅쓽 醫낇빀쟻 쉶蹂 젙룄瑜 寃궗븯떎. 씠윭븳 LEAP뒗 떎뼇븳 痢〓㈃쑝濡 臾대쫷愿젅쓣 룊媛븯떎뒗 젏뿉꽌 쓽쓽媛 엳쑝굹, ACL 옱遺긽 쐞뿕슂씤쑝濡 븣젮졇 엳뒗 嫄댁륫怨 솚痢 궗씠쓽 遺덇퇏삎뿉 빐 젣떆븯吏 븡븯湲 븣臾몄뿉 紐낇솗븳 뒪룷痢 蹂듦 떆젏쓽 젣떆뿉 젣븳젏씠 엳쓣 寃껋쑝濡 뙋떒맂떎. 뵲씪꽌 蹂 뿰援ъ쓽 紐⑹쟻 LEAP瑜 씠슜븯뿬 ACLR 씠썑 씪긽깮솢뿉 臾대━媛 뾾뒗 긽옄뱾쓣 긽쑝濡 臾대쫷愿젅쓽 洹쇰젰, 洹쇱떊寃 議곗젅 뒫젰, 湲곕뒫꽦 뒫젰, 洹좏삎뒫젰 벑쓣 룊媛븯뿬 蹂듦 媛뒫븳 닔以쓣 젣떆븯怨, 嫄댁륫怨 솚痢 媛꾩쓽 醫낇빀쟻 湲곕뒫쓣 鍮꾧탳븯뒗 寃껋씠떎.

뿰援 諛⑸쾿

1. 뿰援щ긽

援먮궡 寃뚯떆뙋쓣 넻븯뿬 옄諛쒖쟻 뿰援 李몄뿬 쓽궗瑜 諛앺엺 15紐낆쓽 꽦씤 궓瑜 紐⑥쭛븯쑝硫(Table 1), 룷븿 湲곗 떎쓬怨 媛숇떎. (1) 留 19꽭遺꽣 40꽭源뚯쓽 꽦씤, (2) ACLR 썑 1뀈 씠긽, 5뀈 誘몃쭔씤 옄, (3) ACLR 닔닠 떆 옄媛씠떇議곗쭅(autograft)쓣 궗슜븳 옄, (4) 씪긽깮솢 諛 뒪룷痢좊줈 蹂듦븳 옄. 떎쓬怨 媛숈 뿰援 긽옄뒗 蹂 뿰援ъ뿉꽌 젣쇅릺뿀떎. (1) 떊泥댄솢룞 닔以(Tegner activity score) level 4뿉 빐떦븯뒗 ‘媛踰쇱슫 끂룞’씠 遺덇븳 옄, 2) 닔닠 湲곕줉吏 젣異쒖씠 遺덇븳 옄.

Table 1 . Demographics of participants

VariableData
Subject15
Sex, male:female12:3
Age (yr)27.87±4.10
Height (cm)172.56±4.81
Body mass (kg)75.51±13.03
Time to surgery (mo)27.11±14.03
IKDC71.87±16.60
Landing Error Scoring System5.40±2.38

IKDC: International Knee Document Committee.



2. 떎뿕 젅李

蹂 뿰援щ뒗 Y븰援 깮紐낆쑄由ъ떖쓽쐞썝쉶瑜 넻빐 듅씤 諛쏆 뿰援 궡슜怨 젅李⑥뿉 뵲씪 吏꾪뻾릺뿀떎(No. 7001988-201804-HR- 356-02). IKDC 二쇨쟻 꽕臾몄瑜 넻빐 씪긽깮솢怨 뒪룷痢 솢룞 以 臾대쫷愿젅쓽 湲곕뒫怨 넻利앹쓣 寃궗븯쑝硫, LEAP쓽 寃궗빆紐⑹ 洹쇰젰, 젙쟻 洹좏삎 議곗젅 뒫젰, 젏봽 諛 李⑹, 湲곕뒫꽦 룞옉 룊媛濡 援ъ꽦븯떎(Table 2).

Table 2 . Dependent variables and items of Lower Extremity Assessment Protocol

VariableCategoryItem
StrengthIsokinetic90°/sec extension torque, 90°/sec flexion torque, 180°/sec extension torque, 180°/sec flexion torque
IsometricPeak extension torque, peak flexion torque
Fatigue indexDecreasing rateExtension, flexion
Landing Error Scoring SystemMotion analysisJoint angle at initial contact, stance width, foot position (joint angle, symmetry), joint angle displacement, overall impression
Static postural controlOne-leg standingCenter of pressure
Functional taskHopping distance and timeSingle hop, triple hop, cross-over hop, 6 m timed hop


3. 痢≪젙 諛⑸쾿

1) 臾대쫷愿젅 벑냽꽦 諛 벑泥숈꽦 뿀踰낆 洹쇰젰

臾대쫷愿젅쓽 룄洹 諛 援쏀옒洹쇱쓽 젙솗븳 痢≪젙 諛 蹂댁긽옉슜쓣 삁諛⑺븯湲 쐞빐 뒪듃옪(strap)쓣 씠슜븯뿬 臾대쫷愿젅쓽 吏곸엫쓣 理쒖냼솕븯떎. 寃궗 쟾 10遺꾧컙쓽 以鍮꾩슫룞怨 3쉶쓽 뿰뒿 湲고쉶媛 二쇱뼱議뚯쑝硫, 벑냽꽦 痢≪젙옣鍮(CON-TREX MJ; Physiomed, Laipersdorf, Germany)瑜 씠슜븯뿬 寃궗瑜 吏꾪뻾븯떎. 嫄댁륫怨 솚痢 紐⑤몢 벑냽꽦 諛 벑泥숈꽦 뿀踰낆 洹쇰젰쓣 痢≪젙븯떎. 벑냽꽦 洹쇰젰 痢≪젙 媛곸냽룄뒗 90°/珥, 180°/珥덈줈 꽕젙븯쑝硫, 벑泥숈꽦 洹쇰젰 臾대쫷愿젅 援쏀옒 90° 옄꽭뿉꽌 痢≪젙릺뿀떎(Fig. 1). 臾대쫷愿젅쓽 紐⑤뱺 洹쇰젰 뜲씠꽣뒗 嫄댁륫怨 솚痢 紐⑤몢 3쉶 痢≪젙 썑, 媛 痢≪젙 以 peak/泥댁쨷% 媛믪쓽 룊洹 媛믪쓣 湲곕줉븯떎.

Fig. 1. Isokinetic and isometric measurement of strength. (A) Knee flexion 90° (left) and (B) knee extension 180° (right). Written informed consent was obtained for publication of this study and accompanying images.
2) 젙쟻 옄꽭 議곗젅

젙쟻 옄꽭 議곗젅 뒫젰 痢≪젙쓣 쐞빐 뵾뿕옄뒗 AccuSway force plate (AMTI, Watertown, MA, USA) 쐞뿉꽌 늿쓣 媛먯 梨 븳 諛쒕줈 10珥덇컙 옄꽭瑜 쑀吏븯떎(Fig. 2). 뵾뿕옄媛 臾대쫷愿젅 90º 援닿끝, 뿁뜦堉덈뒫꽑(iliac crest) 쁿 뼇넀 쑀吏, 떆꽑 젙硫 쓳떆瑜 쑀吏븯쓣 븣 삱諛붾Ⅸ 옄꽭濡 媛꾩<릺뿀떎. 痢≪젙 諛섎諛쒖씠 諛붾떏뿉 떯嫄곕굹 痢≪젙 떎由ъ뿉 吏吏븷 寃쎌슦, 늿쓣 쑍 寃쎌슦, 삉뒗 넀쓣 씠슜븯뿬 洹좏삎쓣 쑀吏븯쓣 寃쎌슦 옱痢≪젙븯떎. 븳 諛 吏吏 옄꽭瑜 넻븳 븬젰以묒떖젏(center of pressure)쓽 냽룄(velocity) 뜲씠꽣뒗 50 Hz濡 湲곕줉릺뿀쑝硫, 븳 踰덉쓽 뿰뒿 썑 嫄댁륫怨 솚痢 媛 3쉶 痢≪젙븯뿬 룊洹 媛믪쓣 援ы븯떎.

Fig. 2. Static postural control. Written informed consent was obtained for publication of this study and accompanying images.
3) Landing Error Scoring System

뵾뿕옄뒗 30 cm 넂씠쓽 룄빟뿉꽌 떊옣쓽 1/2 吏젏쑝濡 뼇 諛쒕줈 李⑹븳 썑, 諛쒖씠 떯뒗 利됱떆 理쒕 닔吏 젏봽瑜 떎떆븯떎(Fig. 3). LESS瑜 遺꾩꽍븯湲 쐞빐 룞옉 遺꾩꽍 봽濡쒓렇옩(Kinovea, version 0.8.15; free software available at http://www.kinovea.org)쓣 궗슜븯뿬 痢≪젙븯떎. 몢 쓽 移대찓씪(Fujinon 1:1.2 6 mm, Fujifilm, Tokyo, Japan; MT057C4-G, Manfrotto, Italy)뒗 뵾뿕옄쓽 젙硫닿낵 痢〓㈃ 3.5 m 嫄곕━뿉 諛곗튂븯뿬 룄빟 諛 李⑹ 룞옉쓣 끃솕븯떎. 怨좎쑀븳 吏곸엫 뙣꽩 遺꾩꽍쓣 쐞빐 李⑹ 뿰援 李몄뿬옄뿉寃 LESS쓽 梨꾩젏 빆紐⑹쓣 궗쟾뿉 怨좎븯吏 븡븯쑝硫, 痢≪젙 쟾 3쉶쓽 뿰뒿 湲고쉶媛 二쇱뼱議뚮떎. LESS쓽 珥앹젏 19젏쑝濡, 理쒖큹 젒吏 떆 諛, 븯吏, 泥닿컙쓽 媛곷룄, 理쒓퀬 臾대쫷愿젅 援닿끝 媛곷룄, 理쒓퀬 臾대쫷愿젅 援닿끝 媛곷룄 떆 븯吏 泥닿컙쓽 媛곷룄, 쟾泥댁쟻 李⑹ 吏곸엫 벑 珥 17媛吏 빆紐⑹쓣 룊媛븯떎17.

Fig. 3. Landing Error Scoring System. (A) Start, (B) Land and (C) Jump. Written informed consent was obtained for publication of this study and accompanying images.
4) 湲곕뒫꽦 寃궗

룄빟(hopping) 룞옉(Fig. 4)쓣 넻븳 湲곕뒫꽦 寃궗뒗 븳 諛 룄빟(single hop), 븳 諛 3쉶 룄빟(triple hop), 븳 諛 援먯감 룄빟(cross-over hop), 6 m 룄빟(6 m timed hop) 벑 珥 4媛吏 룞옉쑝濡 援ъ꽦릺뿀떎18. 븳 諛 룄빟, 븳 諛 3쉶 룄빟, 븳 諛 援먯감븯뿬 3쉶 룄빟 寃궗쓽 湲곕줉 異쒕컻꽑쑝濡쒕꽣 李⑹ 吏젏源뚯쓽 嫄곕━瑜 cm 떒쐞濡 닔吏묓븯怨, 6 m 룄빟 寃궗뒗 6 m쓽 嫄곕━瑜 븳 諛쒕줈 뿰냽 룄빟븯뿬 넻怨쇳븳 떆媛꾩쑝濡 湲곕줉븯떎. 紐⑤뱺 룞옉 嫄댁륫怨 솚痢 紐⑤몢 媛 3쉶 떎떆븯뿬 룊洹좉컪쓣 湲곕줉븯떎.

Fig. 4. Hop tests. (A) Start. (B) End (single, triple, cross-over, and 6 m timed hop). Written informed consent was obtained for publication of this study and accompanying images.

4. 넻怨 遺꾩꽍

紐⑤뱺 LEAP 뜲씠꽣쓽 遺꾩꽍 IBM SPSS version 25.0 (IBM Corp., Armonk, NY, USA)瑜 씠슜븯떎. 솚痢↔낵 嫄댁륫쓽 LEAP 寃곌낵瑜 鍮꾧탳븯湲 쐞븯뿬 쓳몴蹂(paired) t-寃젙쓣 떎떆븯떎. 紐⑤뱺 넻怨꾩튂쓽 쑀쓽닔以 α=0.05濡 꽕젙븯쑝硫, Cohen’s d 怨듭떇쓣 씠슜븳 슚怨쇳겕湲(effect size, ES) 95% 떊猶곌뎄媛(confidence interval, CI)쓣 궛異쒗븯떎.

寃 怨

ACLR 썑 룊洹 2.33뀈씠 吏궃 긽옄쓽 IKDC 二쇨쟻 꽕臾 젏닔뒗 71.87±16.60젏쑝濡 굹궗쑝硫, LESS뒗 5.40±2.38젏쓣 湲곕줉븯떎. 嫄댁륫 鍮 솚痢 愿젅쓽 寃곗넀쑉 Table 3怨 媛숇떎. 嫄댁륫怨 솚痢 媛 LEAP 寃곌낵瑜 鍮꾧탳븯湲 쐞빐 쓳몴蹂 t-寃젙쓣 떎떆븳 寃곌낵, 솚痢〓낫떎 嫄댁륫 臾대쫷愿젅쓽 벑냽꽦(90°/珥) 룄 洹쇰젰(t=2.693, p=0.017, ES=1.39, 95% CI=0.26–2.52)怨 벑泥숈꽦 援쏀옒 洹쇰젰(t=3.054, p=0.009, ES=1.58, 95% CIs=0.42–2.74)씠 뜑슧 넂怨, 湲 븳 諛 룄빟 湲곕줉(t=3.094, p=0.008, ES=1.60, 95% CI=0.44–2.76)씠 굹궗떎(Table 4). 벑냽꽦 援쏀옒 洹쇰젰(90°/珥, 180°/珥), 룄 洹쇰젰(180°/珥), 벑泥숈꽦 룄 洹쇰젰, 룄 諛 援쏀옒 洹쇰젰쓽 젙쟻 옄꽭 議곗젅, 븳 諛 3쉶 룄빟, 븳 諛 援먯감 룄빟, 6 m 룄빟 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎(p>0.05).

Table 3 . Defect rate of the injured knee compared to the non-injured knee

VariableDefect rate (%)
Isokinetic
Extension 90°/sec−16.88
Flexion 90°/sec−12.33
Extension 180°/sec−15.48
Flexion 180°/sec−23.05
Isometric
Extension−15.80
Flexion−17.02
One-leg standing (functional hop test)8.71
Single hop (cm)−14.38
Triple hop (cm)−37.79
Cross-over hop (cm)−3.77
6 m timed hop (sec)22.31

Table 4 . Lower Extremity Assessment Protocol results between non-injured and injured limb

VariableNon-injuredInjuredtpEffect size (Cohen’s d)95% CI
Isokinetic
Extension 90°/sec145.70±47.06121.11±41.872.6930.0171.390.26 to 2.52
Flexion 90°/sec93.0±33.0681.53±25.251.8230.0900.94−0.13 to 2.01
Extension 180°/sec111.85±39.5194.54±42.981.8840.0800.97−0.10 to 2.04
Flexion 180°/sec80.53±31.4561.97±51.501.5640.1400.81−0.24 to 1.86
Isometric
Extension170.23±44.2143.33±50.481.8340.0880.95−0.12 to 2.01
Flexion80.83±21.8567.07±21.173.0540.0091.580.42 to 2.74
One-leg standing (functional hop test)8.71±2.459.23±2.53−0.5620.583−0.29−1.31 to 0.73
Single hop (cm)131.13±28.25112.27±44.983.0940.0081.600.44 to 2.76
Triple hop (cm)591.87±701.34368.20±137.921.1740.2600.61−0.43 to 1.64
Cross-over hop (cm)352.07±106.71338.80±140.40.4660.6480.24−0.78 to 1.26
6 m timed hop (sec)2.42±0.702.96±1.59−2.1090.053−1.09−2.17 to −0.004

CI: confidence interval.


怨 李

蹂 뿰援щ뒗 꽦怨듭쟻쑝濡 씪긽깮솢 諛 뒪룷痢좊줈 蹂듦븳 긽옄뱾뿉寃 IKDC 꽕臾몄 LEAP瑜 씠슜븯뿬 二쇨쟻 諛 媛앷쟻 臾대쫷愿젅 湲곕뒫쓣 룊媛븿쑝濡쒖뜥 뒪룷痢좊줈 蹂듦븷 닔 엳뒗 湲곗쓣 留덈젴븯怨, 嫄댁륫怨 솚痢 愿젅 媛 鍮꾧탳瑜 넻빐 옞옱쟻 옱遺긽 쐞뿕꽦쓣 寃궗븯湲 쐞븳 紐⑹쟻쑝濡 닔뻾릺뿀떎. IKDC 젏닔뒗 룊洹 빟 71젏쑝濡 굹궗쑝硫, LEAP 寃곌낵 꽦怨듭쟻쑝濡 씪긽깮솢怨 뒪룷痢좊줈 蹂듦뻽쓬뿉룄 遺덇뎄븯怨 嫄댁륫 愿젅뿉 鍮꾪빐 솚痢≪쓽 湲곕뒫씠 쑀쓽븯寃 궙 빆紐⑹씠 엳뒗 寃껋쑝濡 굹궗떎.

蹂 뿰援щ뒗 ACLR 썑 臾대쫷 떊쟾洹 諛 援닿끝洹쇱쓽 洹쇰젰쓣 룊媛븯湲 쐞빐 벑냽꽦 諛 벑泥숈꽦 寃궗瑜 吏꾪뻾븯떎. 솚痢↔낵 嫄댁륫 媛 臾대쫷愿젅 洹쇰젰쓣 룊媛븳 寃곌낵, 솚痢 臾대쫷愿젅쓽 벑냽꽦 떊쟾洹(90°/珥)怨 벑泥숈꽦 援쏀옒 洹쇰젰씠 嫄댁륫뿉 鍮꾪빐 쑀쓽븯寃 궙 寃껋쑝濡 굹궗쑝硫, 嫄댁륫 鍮 솚痢 愿젅쓽 寃곗넀쑉 媛곴컖 16.9%, 17.0%濡 굹궗떎. 뿬윭 꽑뻾뿰援щ뒗 臾대쫷 떊쟾洹 諛 援닿끝洹쇱쓽 洹쇰젰 룊媛瑜 쐞빐 벑냽꽦 諛 벑泥숈꽦 닔異 삎깭瑜 솢슜븯쑝硫, 씠瑜 솢슜븯뿬 ACLR 씠썑 臾대쫷愿젅쓽 쉶蹂 젙룄瑜 젣떆븯떎. 듅엳 臾대쫷愿젅쓽 떊쟾 洹쇰젰 ACLR 씠썑 닔 뀈源뚯 빟솕릺뼱19 씪긽깮솢怨 뒪룷痢 솢룞쓣 젣븳븯怨 쟾諛섏쟻씤 궣쓽 吏덉뿉 遺젙쟻 쁺뼢쓣 誘몄튂湲 븣臾몄뿉, 씠뿉 븳 룊媛쓽 以묒슂꽦씠 媛뺤“릺뿀떎. 뵲씪꽌 ACLR 썑 솚痢 臾대쫷愿젅쓽 洹쇰젰쓣 넀긽 쟾 삉뒗 嫄댁륫怨 룞씪븳 닔以쑝濡 쉶蹂듯븯뒗 寃껋씠 뒪룷痢 蹂듦 씠썑 옱넀긽 諛⑹瑜 쐞빐 留ㅼ슦 以묒슂븯떎怨 븷 닔 엳떎.

ACL 넀긽 썑 蹂듦 湲곗쓣 젣떆븳 꽑뻾뿰援ъ뿉 쓽븯硫, 嫄댁륫뿉 鍮꾪빐 솚痢 臾대쫷愿젅쓽 洹쇰젰 寃곗넀쑉씠 10% 誘몃쭔씪 寃쎌슦 뒪룷痢 蹂듦뿉 쟻빀븯떎怨 젣떆릺뿀떎20,21. 洹몃윭굹 蹂 뿰援ъ뿉꽌 굹궃 LEAP 寃곌낵뒗 씠蹂대떎 넂 寃곗넀쑉쓣 蹂댁뒗뜲, 씠뒗 꽑뻾뿰援ъ뿉꽌 옱嫄댁닠 씠썑 1뀈 씠긽쓽 떆媛꾩씠 寃쎄낵븳 뮘 洹쇰젰쓣 룊媛븳 寃곗넀쑉씠 10%뿉꽌 27%쓽 李⑥씠瑜 蹂댁씤 寃곌낵 쑀궗븯떎22,23. 씠윭븳 寃곌낵瑜 蹂 븣 솚痢 臾대쫷愿젅쓽 洹쇰젰쓽 쉶蹂듭씠 留ㅼ슦 以묒슂븯吏留, 蹂 뿰援ъ뿉꽌 ACLR 씠썑 꽦怨듭쟻쑝濡 蹂듦븳 긽옄뱾씠 湲곕뒫遺쟾 諛 넻利앹쓣 겕寃 寃쏀뿕븯吏 븡 寃껋쑝濡 誘몃(뼱 蹂대㈃ 솚옄쓽 二쇨쟻 利앹긽뱾씠 蹂듦뿉 뜑슧 겙 쁺뼢쓣 誘몄튂뒗 寃껋쑝濡 뙋떒맂떎. 洹몃윭굹 蹂듦 씠썑 寃곗넀쑉씠 넂 긽옄뱾 ACL 옱遺긽 쐞뿕씠 넂湲 븣臾몄뿉, 솚痢 愿젅쓽 洹쇰젰쓣 쉶蹂듯븯湲 쐞빐 吏냽쟻씤 愿由ш 븘슂븷 寃껋쑝濡 깮媛곷맂떎. 삉븳, 蹂듦 寃곗젙 떆 媛앷쟻 룊媛 뾾씠 솚옄쓽 二쇨쟻 利앹긽뿉留 洹쇨굅븯뿬 뙋떒븷 寃쎌슦 嫄댁륫怨 솚痢 愿젅 媛 넂 寃곗넀쑉濡 씤빐 옱遺긽 쐞뿕씠 넂븘吏 닔 엳湲 븣臾몄뿉 醫낇빀쟻씤 룊媛媛 븘슂븯떎.

蹂 뿰援ъ뿉꽌뒗 ACLR 썑 湲곕뒫꽦 吏곸엫 룊媛瑜 쐞빐 4媛吏 룄빟 寃궗瑜 떎떆븳 寃곌낵, 븳 諛 룄빟寃궗(single leg hop test)뿉꽌 嫄댁륫 臾대쫷愿젅뿉 鍮꾪빐 솚痢≪씠 궙 湲곕줉쓣 굹깉떎. ACLR 썑 넻利 뾾씠 삱諛붾Ⅸ 룞옉쓣 닔뻾븯뒗 寃껋 뒪룷痢 李몄뿬肉 븘땲씪 씪긽깮솢 痢〓㈃뿉꽌 蹂 븣룄 留ㅼ슦 以묒슂븳 슂씤 以묒쓽 븯굹씠떎. 臾대쫷愿젅 븠븯떎 씪뼱굹湲, 怨꾨떒 삤瑜대궡由ш린 媛숈 씪긽깮솢 룞옉뿉 以묒슂븳 뿭븷쓣 떞떦븯湲 븣臾몄뿉, 遺덊렪븿쓣 뒓굜 寃쎌슦 떎궡솢룞 삉븳 젣븳맆 닔 엳떎. 삉븳 룞옉 以 넻利앹씠굹 遺醫, 寃쎌쭅 벑쓣 寃쏀뿕븷 寃쎌슦 솚옄쓽 留뚯”룄媛 겕寃 븯맆 닔 엳湲 븣臾몄뿉 媛앷쟻씤 吏몴 븿猿 솚옄쓽 二쇨쟻 利앹긽 삉븳 븿猿 怨좊젮빐빞 븳떎.

ACLR 썑뿉뒗 洹쇰젰怨 湲곕뒫꽦 룊媛 媛숈 媛앷쟻씤 湲곗肉 븘땲씪 솚옄 媛쒖씤쓽 二쇨쟻씤 留뚯”룄瑜 룊媛븯뒗 寃껋씠 留ㅼ슦 以묒슂븯떎. 蹂 뿰援ъ뿉꽌 꽦怨듭쟻쑝濡 蹂듦븳 긽옄뱾쓽 臾대쫷愿젅 湲곕뒫遺쟾 諛 넻利앹쓣 룊媛븳 寃곌낵, IKDC 젏닔媛 빟 71.87±16.60젏씤 寃껋쑝濡 굹궗떎. 利 愿젅 湲곕뒫뿉 臾몄젣媛 뾾怨 넻利앹쓣 뒓겮吏 븡븘 씪긽깮솢怨 뒪룷痢좎뿉 蹂듦븳 寃껋쑝濡 蹂댁씤떎. 븵꽌 뼵湲됲븳 LEAP 빆紐 以 씪遺媛 寃곗넀쑉쓣 蹂댁쑝誘濡, 媛앷쟻 吏몴濡쒕쭔 蹂듦瑜 寃곗젙븯뒗 寃껋 떎냼 臾대━媛 엳뒗 寃껋쑝濡 뙋떒맂떎. 꽑뻾뿰援ъ뿉꽌 Sernert 벑24 븳 諛 룄빟 寃궗 IKDC 젏닔쓽 긽愿怨꾩닔瑜 0.28濡 蹂닿퀬븯쑝硫, Ageberg 벑25 湲곕뒫쟻 寃궗 寃곌낵 二쇨쟻 寃궗 寃곌낵뿉꽌 0.25–0.43 踰붿쐞쓽 긽愿怨꾩닔瑜 蹂닿퀬븯떎. 씠 媛숈씠 LEAP쓽 媛 빆紐⑹ 솚옄쓽 湲곕뒫遺쟾 諛 넻利앷낵 긽愿愿怨꾨 媛뽰留 鍮꾧탳쟻 궙 긽愿怨꾩닔瑜 媛뽯뒗떎怨 븷 닔 엳떎. 뵲씪꽌 蹂 뿰援ъ뿉꽌 굹궃 IKDC 寃곌낵뒗 蹂듦 湲곗쑝濡쒖꽌 넂 젏닔엫뿉룄 遺덇뎄븯怨, 媛앷쟻 吏몴뿉꽌 젣떆븳 寃곌낵 鍮꾧탳뻽쓣 븣 솚옄쓽 떎젣 긽깭瑜 紐⑤몢 諛섏쁺븯湲 뼱졄떎怨 븷 닔 엳떎.

蹂 뿰援ъ뿉꽌뒗 젙쟻 諛 룞쟻 옄꽭 議곗젅 뒫젰쓣 솗씤븳 寃곌낵 룞쟻 옄꽭 議곗젅 뒫젰(LESS) 룊洹 5.40젏쑝濡 굹궗쑝硫, 젙쟻 옄꽭 議곗젅 뒫젰 솚痢↔낵 嫄댁륫 臾대쫷愿젅 媛 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎. 利, 臾대쫷愿젅 떊쟾洹 諛 援닿끝洹쇱쓽 洹쇰젰怨 湲곕뒫꽦 寃궗뿉꽌 蹂댁뿬吏뒗 寃곗넀怨쇰뒗 떎瑜닿쾶 젙쟻 諛 룞쟻 洹좏삎 뒫젰 룞씪븳 닔以씠씪 븷 닔 엳떎. 蹂 뿰援ъ쓽 寃곌낵 留덉갔媛吏濡 꽑뻾뿰援щ뒗 ACLR 솚옄 議곌뎔 媛 젙쟻 洹좏삎 뒫젰쓽 李⑥씠媛 뾾떎怨 蹂닿퀬븯떎26. 씠윭븳 寃곌낵뒗 몢 媛吏 씠쑀濡 씤빐 굹궗떎怨 뙋떒맂떎. 泥レ㎏, 젙쟻 옄꽭 議곗젅 뒫젰쓽 痢≪젙 臾대쫷愿젅쓽 쐞移섍 셿쟾엳 렣吏 긽깭濡 닔뻾릺뼱 鍮꾧탳쟻 븞젙쟻씤 긽깭濡 吏꾪뻾릺湲 븣臾몄뿉, ACL 넀긽씠 洹좏삎 뒫젰뿉 誘몄튂뒗 쁺뼢씠 떎냼 媛먯냼븳 寃껋쑝濡 蹂댁씤떎. 몢 踰덉㎏, 洹좏삎 뒫젰 洹쇰젰怨 湲곕뒫꽦 룊媛 벑 떎瑜 LEAP 빆紐⑷낵뒗 떎瑜닿쾶 鍮좊Ⅴ寃 쉶蹂듬맂 寃껋쑝濡 뙋떒맂떎. 뵲씪꽌 異뷀썑 뿰援ъ뿉꽌뒗 臾대쫷愿젅씠 蹂대떎 遺덉븞젙븳 긽깭뿉꽌 젙쟻 洹좏삎 뒫젰쓽 痢≪젙쓣 넻빐 ACL쓽 넀긽씠 떎吏덉쟻 젙쟻 洹좏삎 뒫젰쓽 媛먯냼瑜 빞湲고븯뒗吏, 삉뒗 넀긽 썑 洹좏삎 뒫젰 떎瑜 슂냼뱾蹂대떎 鍮좊Ⅴ寃 쉶蹂듬릺뒗吏 솗씤븷 븘슂媛 엳쓣 寃껋씠떎.

蹂 뿰援ъ쓽 젣븳젏쑝濡쒕뒗 泥レ㎏, ACL 넀긽 썑뿉 닔닠 썑 옱솢 移섎즺 봽濡쒓렇옩쓽 李몄뿬 뿬遺瑜 議곗궗븯吏 븡븯떎뒗 寃껋씠떎. 씠뒗 蹂듦 떆젏怨 蹂듦 씠썑 臾대쫷愿젅쓽 쟾諛섏쟻 湲곕뒫뿉 쁺뼢쓣 誘몄튌 닔 엳湲 븣臾몄뿉 蹂 뿰援ъ쓽 젣븳젏씠씪 븯寃좊떎. 몢 踰덉㎏濡쒕뒗 ACL 넀긽 떆 룞諛 넀긽 議곗쭅쓣 솗씤븯吏 븡븯湲 븣臾몄뿉 솚옄留덈떎 넀긽쓽 쁺뼢씠 떎瑜 닔 엳떎뒗 寃껋씠떎. 洹몃윭굹 씠윭븳 젣븳젏뿉룄 遺덇뎄븯怨 蹂 뿰援щ뒗 二쇨쟻 솚옄 以묒떖 寃곌낵臾쇨낵 LEAP瑜 넻빐 媛앷쟻 諛 二쇨쟻 臾대쫷愿젅쓽 湲곕뒫쓣 寃궗븿쑝濡쒖뜥, 蹂듦 湲곗쓣 젣떆븯怨 嫄댁륫怨 솚痢 臾대쫷愿젅 媛 寃곗넀쑉 젣떆瑜 넻븯뿬 옱遺긽 쐞뿕꽦쓣 蹂닿퀬븯떎뒗 쓽誘멸 엳떎.

蹂 뿰援ъ쓽 寃곕줎 떎쓬怨 媛숇떎. (1) ACLR 썑 蹂듦 뿬遺 떆湲곕 寃곗젙븷 븣 IKDC 寃궗 LEAP 寃궗쓽 寃곌낵瑜 怨좊젮븯뒗 寃껋씠 留ㅼ슦 以묒슂븯떎. (2) 蹂듦뻽쓬뿉룄 遺덇뎄븯怨 LEAP 寃궗 寃곌낵 嫄댁륫怨 솚痢 愿젅 媛 寃곗넀쑉쓣 蹂댁씠뒗 빆紐⑹씠 議댁옱븳떎. 洹몃윭誘濡 ACLR 썑 蹂듦 뿬遺 떆湲곕 怨좊젮븷 븣, 솚옄쓽 二쇨쟻 湲곕뒫遺쟾 諛 넻利앹씠 議댁옱븯뒗吏 솗씤빐빞 븯硫, 臾대쫷愿젅쓽 떎뼇븳 痢〓㈃뿉꽌 嫄댁륫 愿젅怨 鍮꾩듂븳 닔以쑝濡 쉶蹂듯뻽뒗吏 寃궗븯뒗 寃껋씠 留ㅼ슦 以묒슂븯떎.

LEAP뒗 臾대쫷愿젅쓽 떎뼇븳 痢〓㈃쓣 룊媛븷 닔 엳뒗 諛⑸쾿씠湲 븣臾몄뿉, 異뷀썑뿰援ъ뿉꽌뒗 ACL肉먮쭔 븘땲씪 臾대쫷愿젅 궡 룞諛 넀긽 諛 솚옄 議곌뎔 뿰援щ 븿猿 솗씤븯뿬 쟻슜븳떎硫, 臾대쫷愿젅 넀긽 諛 옱솢 遺꾩빞뿉꽌 뜑슧 쓽誘 엳뒗 뿰援ш 맆 寃껋쑝濡 뙋떒맂떎.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Conceptualization: BHK, JHC, SYL. Data curation: BHK, JHC. Formal analysis: BHK, HGJ. Methodology: BHK, JHC, SYL. Project administration: BHK, HGJ, SYL. Visualization: TKK. Writing–original draft: BHK, JHC, SYL. Writing–review & editing: TKK.

References
  1. Corry I, Webb J. Injuries of the sporting knee. Br J Sports Med 2000;34:395.
    Pubmed KoreaMed CrossRef
  2. Grapar 탐argi T, Drobni훾 M, Vauhnik R, Koder J, Kacin A. Factors predicting quadriceps femoris muscle atrophy during the first 12weeks following anterior cruciate ligament reconstruction. Knee 2017;24:319-28.
    Pubmed CrossRef
  3. Wurtzel CN, Gumucio JP, Grekin JA, et al. Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear. J Orthop Res 2017;35:2499-505.
    Pubmed KoreaMed CrossRef
  4. Gföller P, Abermann E, Runer A, et al. Non-operative treatment of ACL injury is associated with opposing subjective and objective outcomes over 20 years of follow-up. Knee Surg Sports Traumatol Arthrosc 2019;27:2665-71.
    Pubmed CrossRef
  5. Filbay SR, Culvenor AG, Ackerman IN, Russell TG, Crossley KM. Quality of life in anterior cruciate ligament-deficient individuals: a systematic review and meta-analysis. Br J Sports Med 2015;49:1033-41.
    Pubmed CrossRef
  6. Wright RW, Preston E, Fleming BC, et al. A systematic review of anterior cruciate ligament reconstruction rehabilitation: part I: continuous passive motion, early weight bearing, postoperative bracing, and home-based rehabilitation. J Knee Surg 2008;21:217-24.
    Pubmed KoreaMed CrossRef
  7. Kaplan Y. Identifying individuals with an anterior cruciate ligament-deficient knee as copers and noncopers: a narrative literature review. J Orthop Sports Phys Ther 2011;41:758-66.
    Pubmed CrossRef
  8. Weiler A, Schmeling A, Stöhr I, Kääb MJ, Wagner M. Primary versus single-stage revision anterior cruciate ligament reconstruction using autologous hamstring tendon grafts: a prospective matched-group analysis. Am J Sports Med 2007;35:1643-52.
    Pubmed CrossRef
  9. Jordan MJ, Aagaard P, Herzog W. Lower limb asymmetry in mechanical muscle function: a comparison between ski racers with and without ACL reconstruction. Scand J Med Sci Sports 2015;25:e301-9.
    Pubmed CrossRef
  10. Sharifmoradi K, Karimi MT, Hoseini Y. Evaluation of the asymmetry of leg muscles forces in the subjects with anterior cruciate ligament reconstruction. J Knee Surg 2019 Sep 2. [Epub]. https://doi.org/10.1055/s-0039-1695703.
    Pubmed CrossRef
  11. Schmitt LC, Paterno MV, Ford KR, Myer GD, Hewett TE. Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction. Med Sci Sports Exerc 2015;47:1426-34.
    Pubmed KoreaMed CrossRef
  12. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 2005;33:492-501.
    Pubmed CrossRef
  13. Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med 2007;17:258-62.
    Pubmed CrossRef
  14. Bodkin SG, Rutherford MH, Diduch DR, Brockmeier SF, Hart JM. How much time is needed between serial "return to play" assessments to achieve clinically important strength gains in patients recovering from anterior cruciate ligament reconstruction? Am J Sports Med 2020;48:70-7.
    Pubmed CrossRef
  15. Hambly K, Griva K. IKDC or KOOS?: which measures symptoms and disabilities most important to postoperative articular cartilage repair patients? Am J Sports Med 2008;36:1695-704.
    Pubmed CrossRef
  16. DiFabio M, Slater LV, Norte G, Goetschius J, Hart JM, Hertel J. Relationships of functional tests following ACL reconstruction: exploratory factor analyses of the lower extremity assessment protocol. J Sport Rehabil 2018;27:144-50.
    Pubmed CrossRef
  17. Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE Jr, Beutler AI. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med 2009;37:1996-2002.
    Pubmed CrossRef
  18. Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR. Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 2007;87:337-49.
    Pubmed CrossRef
  19. Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med 2008;27:405-24.
    Pubmed CrossRef
  20. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med 2011;39:538-43.
    Pubmed CrossRef
  21. Risberg MA, Holm I, Myklebust G, Engebretsen L. Neuromuscular training versus strength training during first 6 months after anterior cruciate ligament reconstruction: a randomized clinical trial. Phys Ther 2007;87:737-50.
    Pubmed CrossRef
  22. Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM. Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 2008;16:1009-16.
    Pubmed CrossRef
  23. Moisala AS, Järvelä T, Kannus P, Järvinen M. Muscle strength evaluations after ACL reconstruction. Int J Sports Med 2007;28:868-72.
    Pubmed CrossRef
  24. Sernert N, Kartus J, Köhler K, et al. Analysis of subjective, objective and functional examination tests after anterior cruciate ligament reconstruction: a follow-up of 527 patients. Knee Surg Sports Traumatol Arthrosc 1999;7:160-5.
    Pubmed CrossRef
  25. Ageberg E, Thomeé R, Neeter C, Silbernagel KG, Roos EM. Muscle strength and functional performance in patients with anterior cruciate ligament injury treated with training and surgical reconstruction or training only: a two to five-year followup. Arthritis Rheum 2008;59:1773-9.
    Pubmed CrossRef
  26. Mattacola CG, Perrin DH, Gansneder BM, Gieck JH, Saliba EN, McCue FC 3rd. Strength, functional outcome, and postural stability after anterior cruciate ligament reconstruction. J Athl Train 2002;37:262-8.
    Pubmed KoreaMed