search for



Association of Cardiovascular Disease Risk and Physical Fitness with Cognitive Impairment in Korean Elderly Women
Korean J Sports Med 2021;39:51-59
Published online June 1, 2021;  https://doi.org/10.5763/kjsm.2021.39.2.51
© 2021 The Korean Society of Sports Medicine.

Inhwan Lee, Hyunsik Kang

College of Sport Science, Sungkyunkwan University, Suwon, Korea
Correspondence to: Hyunsik Kang
College of Sport Science, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
Tel: +82-31-299-6911, Fax: +82-31-299-6941, E-mail: hkang@skku.edu
*This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A1A0104377).
Received February 4, 2021; Revised February 22, 2021; Accepted February 25, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Purpose: This study aimed to investigate the effect of cardiovascular disease (CVD) risk and physical fitness on cognitive impairment in Korean elderly women.
Methods: In a cross-sectional design, a total of 308 Korean elderly women, aged 60 years or older, participated in this study. Measured parameters included the 10-year Framingham risk score (FRS), physical fitness (i.e., upper and lower body strength and flexibility and endurance), and cognitive performance based on Mini-Mental State Examination for dementia screening. The participants were classified as low (<10%) or intermediate and high (돟 10%) risk groups based on the 10-year FRS and as unfit (lower 50%) or fit (higher 50%) on a composite z-score of physical fitness. Logistic regression was used to estimate the odd ratios (ORs) and confidence intervals (CIs) of cognitive impairment according to the 10-year FRS and physical fitness-based classification.
Results: The low FRS/unfit and intermediate or high FRS/unfit groups had significantly higher risks of cognitive impairment (OR, 3.714; 95% CI, 1.324– 10.418; p=0.013 and OR, 11.345; 95% CI, 4.810–26.762; p<0.001, respectively) compared with the low FRS/fit group (OR, 1). In particular, the elevated risk of cognitive impairment remained significant (OR, 3.876; 95% CI, 1.400– 10.726; p=0.009) even after adjustments for covariates such as age, body mass index, education, and physical inactivity.
Conclusion: The current findings suggest that an intervention targeting at both CVD risk reduction and physical fitness promotion is urgent as a preventive and/or therapeutic measure against declines in cognitive function in Korean elderly women.
Keywords : Cognitive impairment, Heart disease risk factors, Physical fitness, Elderly
꽌 濡

쟾 꽭怨꾩쟻쑝濡 湲됯꺽븳 怨좊졊솕 쁽긽씠 굹굹怨 엳쑝硫, 끂뀈湲 몴쟻씤 留뚯꽦눜뻾꽦 吏덊솚씤 移섎ℓ 쑀蹂묐쪧룄 룞떆뿉 利앷븯怨 엳떎. 援궡 뿭븰議곗궗뿉 쓽븯硫, 슦由щ굹씪 끂씤쓽 寃쎈룄씤吏옣븷(mild cognitive impairment) 솚옄 닔뒗 2018뀈쓣 湲곗쑝濡 빟 170留 紐낆쑝濡 굹궗怨, 2022뀈뿉뒗 200留 紐, 2032뀈뿉뒗 300留 紐낆뿉 씠瑜 寃껋쑝濡 삁긽븯怨 엳쑝硫, 移섎ℓ 솚옄 닔 삉븳 2018뀈쓣 湲곗쑝濡 빟 75留 紐낆쑝濡 굹궗怨, 2024뀈뿉뒗 빟 100留 紐낆씠 맆 寃껋쑝濡 異붿궛릺怨 엳떎1. 삉븳 슦由щ굹씪 쟾泥 移섎ℓ 씤援 以 뿬꽦 솚옄쓽 鍮꾩쑉씠 빟 62%濡 굹궗쓣 肉먮쭔 븘땲씪 뿬꽦쓽 寃쎌슦 移섎ℓ濡 씤븳 궗留 쐞뿕씠 궓꽦蹂대떎 빟 2.3諛 넂 寃껋쑝濡 굹굹, 끂뀈湲 뿬꽦쓽 씤吏옣븷瑜 삁諛⑺븯湲 쐞븳 梨 留덈젴쓽 븘슂꽦씠 吏냽빐꽌 젣湲곕릺怨 엳떎.

寃쎈룄씤吏옣븷뒗 移섎ℓ쓽 쟾엫긽 떒怨꾨줈 븣젮졇 엳쑝硫, 젙긽쟻씤 끂솕 怨쇱젙뿉꽌쓽 移섎ℓ 쑀蹂묐쪧씠 1%–2%씤 諛섎㈃ 寃쎈룄씤吏옣븷 끂씤쓽 移섎ℓ 쑀蹂묐쪧 10%–15%뿉 씠瑜대뒗 寃껋쑝濡 븣젮졇 엳떎2. 씠윭븳 씤吏湲곕뒫 븯瑜 媛냽솕븯뒗 몴쟻씤 쐞뿕씤옄뒗 援먯쑁닔以, 媛援 썡냼뱷, 룆嫄 벑쓽 씤援ъ궗쉶븰쟻 슂씤, 쓬二 諛 씉뿰, 醫뚯떇 솢룞, 洹쇱쑁웾 媛먯냼, 怨⑤떎怨듭쬆(osteoporosis) 벑쓽 嫄닿컯 愿젴 슂씤, 踰좏-븘諛濡쒖씠뱶, 슦 떒諛깆쭏 벑쓽 깮臾쇳븰쟻 슂씤씠 엳뒗 寃껋쑝濡 븣젮졇 엳떎3,4. 삉븳 떎뼇븳 꽑뻾뿰援ъ뿉꽌 怨좏삁븬, 떦눊 벑쓣 룷븿븳 떖삁愿吏덊솚(cardiovascular disease) 쐞뿕슂씤뱾 씤吏湲곕뒫怨 諛젒븳 뿰愿꽦씠 엳쓣 肉먮쭔 븘땲씪 븣痢좏븯씠癒 移섎ℓ 떎쓬쑝濡 쑀蹂묐쪧씠 넂 삁愿꽦 移섎ℓ쓽 二쇱슂 쐞뿕씤옄濡쒕룄 븣젮졇 떖삁愿吏덊솚怨 씤吏湲곕뒫 븯쓽 뿰愿꽦뿉 븳 愿떖씠 利앷븯怨 엳떎5,6.

떖삁愿吏덊솚 以묐뀈 씠썑 二쇱슂 궗留앹썝씤쑝濡 븣젮졇 엳쑝硫, 理쒓렐 뿰援щ뱾 踰좏-븘諛濡쒖씠뱶 異뺤쟻, 뇤슜쟻 蹂솕 벑씠 씤吏湲곕뒫 븯瑜 媛냽솕븷 닔 엳떎뒗 寃곌낵瑜 蹂닿퀬븯怨 엳떎7,8. 씠 愿젴븯뿬, 쑀읇 끂씤쓣 긽쑝濡 떎떆븳 Viticchi 벑9쓽 뿰援ъ뿉꽌뒗 떖삁愿吏덊솚 쐞뿕룄媛 넂쓣닔濡 寃쎈룄씤吏옣븷뿉꽌 移섎ℓ濡 吏꾪뻾맆 쐞뿕씠 넂寃 굹궗떎怨 蹂닿퀬븳 諛 엳쑝硫, 븘떆븘 끂씤쓣 긽쑝濡 떎떆븳 Song 벑10쓽 뿰援ъ뿉꽌뒗 떖삁愿吏덊솚 쐞뿕룄媛 넂쓣닔濡 씤吏湲곕뒫 븯媛 鍮좊Ⅴ寃 吏꾪뻾맆 肉먮쭔 븘땲씪 빐留, 쉶깋吏 諛 諛깆깋吏 벑 뇤슜쟻쓽 媛먯냼媛 鍮좊Ⅴ寃 굹궗떎怨 蹂닿퀬븳 諛 엳떎. 씠윭븳 寃곌낵뱾쓣 蹂대㈃, 끂뀈湲 떖삁愿吏덊솚 쐞뿕 떊寃쎌깮臾쇳븰쟻 슂씤쓽 蹂솕瑜 넻빐 씤吏湲곕뒫 븯瑜 쑀룄븷 肉먮쭔 븘땲씪 寃쎈룄씤吏옣븷뿉꽌 移섎ℓ濡 젒뼱뱶뒗 뜲 엳뼱 二쇱슂 삁痢≪씤옄媛 맆 닔 엳뒗 寃껋쑝濡 뙋떒맂떎.

븳렪, 泥대젰(physical fitness) 삤옖 湲곌컙 뿰援щ 넻빐 떖삁愿吏덊솚 삁諛⑹뿉 湲띿젙쟻씤 뿭븷쓣 븯뒗 寃껋쑝濡 븣젮졇 엳쓣 肉먮쭔 븘땲씪 끂뀈湲 씤吏湲곕뒫怨쇰룄 諛젒븳 뿰愿꽦씠 엳뒗 寃껋쑝濡 蹂닿퀬릺怨 엳떎11,12. 씠 愿젴맂 뿰援щ뱾쓣 蹂대㈃, 떖삁愿吏덊솚怨 愿젴븯뿬 Tikkanen 벑13怨 Lee 벑14 媛곴컖 쑀읇怨 슦由щ굹씪 以묆냽怨좊졊옄瑜 긽쑝濡 泥대젰怨 떖삁愿吏덊솚 쐞뿕쓽 뿰愿꽦뿉 빐 議곗궗븳 寃곌낵 떖룓泥대젰 諛 븙젰씠 넂쓣닔濡 떖삁愿吏덊솚 諛쒖깮 쐞뿕 궙寃 굹궗떎怨 蹂닿퀬븳 諛 엳쑝硫, 씤吏湲곕뒫怨 愿젴븯뿬 Chou 벑15怨 Kim 벑16 媛곴컖 븘떆븘 슦由щ굹씪 끂씤뱾쓣 긽쑝濡 泥대젰怨 씤吏湲곕뒫 븯쓽 뿰愿꽦뿉 빐 醫낅떒쟻쑝濡 議곗궗븳 썑 蹂댄뻾냽룄 諛 븙젰씠 留롮씠 媛먯냼븷닔濡 씤吏湲곕뒫 븯쓽 냽룄媛 鍮좊Ⅴ寃 굹궗떎怨 蹂닿퀬븳 諛 엳떎. 씠윭븳 寃곌낵뱾쓣 蹂대㈃, 끂뀈湲 泥대젰 닔以 떖삁愿吏덊솚 쐞뿕 諛 씤吏湲곕뒫 븯 媛곴컖 諛젒븳 뿰愿꽦씠 엳뒗 寃껋쑝濡 뙋떒릺吏留, 씤吏湲곕뒫 븯 諛쒖깮뿉 븯뿬 떖삁愿吏덊솚 쐞뿕怨 泥대젰쓽 蹂듯빀쟻씤 뿭븷쓣 寃利앺븳 뿰援щ뒗 쟾臾댄븳 떎젙씠떎. 씠뿉 以묐뀈 씠썑 떖삁愿吏덊솚 쑀蹂묐쪧 吏냽쟻쑝濡 利앷븯怨 엳쑝硫, 떖삁愿吏덊솚 쐞뿕슂씤씠 씤吏湲곕뒫 븯瑜 珥됱쭊븷 닔 엳떎뒗 젏쓣 怨좊젮븷 븣 떖삁愿吏덊솚怨 泥대젰씠 씤吏湲곕뒫 븯뿉 뼱뼚븳 뿭븷쓣 븯뒗吏 寃利앺븯뒗 뿰援ш 븘슂븯떎.

씠뿉 蹂 뿰援щ뒗 슦由щ굹씪 뿬꽦 끂씤쓣 긽쑝濡 떖삁愿吏덊솚 쐞뿕怨 泥대젰씠 씤吏湲곕뒫 븯뿉 뼱뼚븳 뿭븷쓣 븯뒗吏 寃利앺븯뒗 寃껋쓣 二쇱슂 紐⑹쟻쑝濡 븯떎.

뿰援 諛⑸쾿

1. 뿰援щ긽

蹂 뿰援ъ쓽 理쒖큹 긽 寃쎄린룄 닔썝떆 吏뿭쓽 끂씤蹂듭쉶愿, 끂씤젙 벑 끂씤 렪쓽떆꽕쓣 씠슜븯怨 엳뒗 60꽭 씠긽 뿬꽦 끂씤 395紐낆쓣 긽쑝濡 떎떆븯떎. 씠썑 씤吏湲곕뒫 議곗궗 늻씫 16紐, 떖삁愿吏덊솚 쐞뿕씤옄 痢≪젙 늻씫 19紐, 泥대젰 議곗궗 嫄곕 16紐, 떊泥 援ъ꽦 痢≪젙 遺덇 12紐, 떖삁愿吏덊솚 怨쇨굅젰 蹂댁쑀옄 24紐 벑 珥 87紐낆쓣 젣쇅븳 308紐낆쓣 理쒖쥌 긽옄濡 꽑젙븯쑝硫, 紐⑤뱺 긽옄뿉寃 蹂 뿰援ъ쓽 紐⑹쟻 諛 諛⑸쾿쓣 援щ몢濡 꽕紐낇븳 뮘 李몄뿬 룞쓽꽌뿉 꽌紐낆쓣 諛쏄퀬 吏꾪뻾븯떎. 삉븳 蹂 뿰援щ뒗 꽦洹좉븰援 뿰援ъ쑄由ъ떖쓽쐞썝쉶쓽 듅씤쓣 諛쏆븘 吏꾪뻾븯쑝硫(SKKU-IRB-2015-09-001-002), 긽옄 듅꽦 Table 1뿉 젣떆븯떎.

Table 1 . Characteristics of study participants

VariableData (n=308)
Cognitive impairment87 (28.2)
K-MMSE score24.9±3.8
Age (yr)73.4±6.6
Menopause age (yr)49.4±5.2
Body mass index (kg/m2)24.6±3.2
Waist circumstance (cm)90.8±13.6
Education
Elementary or less182 (59.1)
Middle/high school115 (37.3)
College or higher11 (3.6)
Alcohol consumption127 (41.2)
Physical inactivity139 (45.1)
Fall experience84 (27.3)
Sarcopenia65 (21.1)
Osteoporosis67 (21.8)
FRS parameter
FRS (%)13.1±7.6
HDL-C (mg/dL)52.8±13.7
TC (mg/dL)177.8±37.5
SBP (mmHg)128.1±14.0
Hypertension treated169 (54.9)
Smoking8 (2.6)
Diabetes mellitus61 (19.8)
Physical fitness parameter
Upper body strength (time/30 sec)18.2±4.6
Lower body strength (time/30 sec)14.4±4.2
Upper body flexibility (cm)−11.0±12.5
Lower body flexibility (cm)10.6±9.5
Aerobic endurance (time/2 min)98.2±21.0

Values are presented as number (%) or mean±standard deviation.

K-MMSE: Korean version of Mini-Mental State Examination, FRS: Framingham risk score, HDL-C: high density lipo-protein cholesterol, TC: total cholesterol, SBP: systolic blood pressure.



2. 痢≪젙빆紐 諛 遺꾩꽍諛⑸쾿

1) 떊泥 援ъ꽦

떊옣(height) 옄룞 떊옣怨(DS-102; Jenix, Seoul, Korea)瑜 넻빐 痢≪젙븯쑝硫, 泥댁쭏웾吏닔(body mass index)뒗 긽옄뱾쓣 湲덉냽 젣뭹씠 룷븿릺吏 븡 샆쑝濡 媛덉븘 엯엺 뮘, 諛붾Ⅴ寃 늻슫 옄꽭뿉꽌 dual-energy X-ray absorptiometry 썝由щ 궗슜븯뒗 Lunar DPX (GE Medical Systemsm Lunar, WI, USA)瑜 씠슜븯뿬 痢≪젙븯떎. 뿀由щ몮젅(waist circumference)뒗 씤泥댁륫젙 以꾩옄瑜 씠슜븯뿬 옣怨⑤뒫 긽遺 뒔怨 븯떒遺쓽 以묎컙 吏젏쓣 2쉶 痢≪젙븯뿬 룊洹좉컪쓣 湲곕줉븯떎.

2) 씤吏湲곕뒫

씤吏湲곕뒫 媛꾩씠젙떊긽깭寃궗瑜 넗濡 븳援 끂씤쓽 젙꽌 臾명솕쟻 듅꽦쓣 諛섏쁺븯뿬 닔젙 諛 蹂댁셿맂 븳援삎 媛꾩씠젙떊긽깭寃궗(Korean version of Mini-Mental State Examination for dementia screening)瑜 궗슜븯떎17. 蹂 꽕臾몄뒗 吏궓젰, 二쇱쓽젰, 湲곗뼲젰, 뼵뼱뒫젰, 援ъ꽦뒫젰 諛 뙋떒젰쓣 룷븿븳 珥 19臾명빆뿉 빐 30젏 留뚯젏쑝濡 援ъ꽦릺뼱 엳쑝硫, 뿰졊蹂 援먯쑁닔以뿉 洹쇨굅븯뿬 씤吏湲곕뒫 븯 쑀臾대 援щ텇븯떎.

3) 10뀈 궡 떖삁愿吏덊솚 쐞뿕

떖삁愿吏덊솚 쐞뿕 誘멸뎅 Framingham Heart Study뿉꽌 媛쒕컻맂 10-year general cardiovascular risk profile쓣 넗濡 룊媛븯떎18. 蹂 븣怨좊━利섏 꽦蹂, 굹씠, 怨좊룄 吏떒諛 肄쒕젅뒪뀒濡, 닔異뺢린 삁븬, 怨좏삁븬 빟 蹂듭슜, 씉뿰, 떦눊뿉 洹쇨굅븯뿬 10뀈 씠궡 떖삁愿吏덊솚씠 諛쒖깮븷 솗瑜좎쓣 룊媛븯뒗 룄援ъ씠硫, 쐞뿕룄쓽 踰붿쐞뒗 1%–30%씠떎. 씠뿉 蹂 뿰援ъ뿉꽌뒗 궛異쒕맂 쐞뿕룄瑜 湲곗쑝濡 10% 誘몃쭔뿉 냽븯뒗 쐞뿕援(low-risk group), 10% 씠긽뿉 냽븯뒗 以묆냽怨좎쐞뿕援(intermediate- or high-risk group)쑝濡 吏묐떒쓣 꽭遺꾪솕븯떎.

4) 泥대젰 痢≪젙 諛 吏묐떒 遺꾨쪟

泥대젰 끂씤쓽 떊泥댁쟻 뒫젰쓣 룊媛븯湲 쐞빐 Rikli Jones19媛 媛쒕컻븳 끂씤泥대젰寃궗(Senior Fitness Test)뿉 洹쇨굅븯뿬 긽냽븯泥 洹쇰젰, 긽냽븯泥 쑀뿰꽦, 떖룓吏援щ젰쓣 痢≪젙븯떎. 긽泥 洹쇰젰(upper body strength) 쓽옄뿉 벑쓣 湲곕怨 븠 옄꽭뿉꽌 빟 2.26 kg쓽 뜡踰⑥쓣 30珥덇컙 뱾뿀떎 궡由 슏닔瑜 痢≪젙븯쑝硫, 븯泥 洹쇰젰(lower body strength) 쓽옄뿉 븠 옄꽭뿉꽌 뙏쓣 援먯감븳 뮘 30珥덇컙 븠븯떎 씪뼱꽑 슏닔瑜 痢≪젙븯떎. 긽泥 쑀뿰꽦(upper body flexibility) 뼇뙏쓣 벑 뮘濡 븳 뮘 뼇넀쓽 媛슫뜲 넀媛씫씠 寃뱀퀜吏뒗 湲몄씠瑜 痢≪젙븯쑝硫, 븯泥 쑀뿰꽦(lower body flexibility) 쓽옄뿉 븠 긽깭뿉꽌 븳履 떎由щ 六쀬뼱 諛쒓퓞移섎 諛붾떏뿉 똾 뮘 媛슫뜲 넀媛씫씠 諛쒕걹쓣 吏굹媛 湲몄씠瑜 痢≪젙븯떎. 삉븳 떖룓吏援щ젰(aerobic endurance) 2遺꾧컙 젣옄由ъ뿉꽌 嫄몄 슏닔瑜 痢≪젙븯떎. 씠썑 쟾泥 泥대젰쓽 몴以솕젏닔(Z-score)瑜 궛異쒗븳 뮘 긽쐞 50%뒗 뼇샇븳 泥대젰(fit)쑝濡, 븯쐞 50%뒗 遺덈웾븳 泥대젰(unfit)쑝濡 吏묐떒쑝濡 꽭遺꾪솕븯떎.

5) 씤援ъ궗쉶븰쟻 슂씤 諛 嫄닿컯 愿젴 슂씤

씤援ъ궗쉶븰쟻 슂씤 諛 嫄닿컯 愿젴 슂씤쑝濡 援먯쑁닔以, 븣肄붿삱 꽠痍(drinking alcohol), 떊泥댄솢룞 遺議(physical inactivity), 굺긽 寃쏀뿕(fall experience), 洹쇨컧냼利(sarcopenia), 怨⑤떎怨듭쬆뿉 빐 議곗궗븯떎. 援먯쑁닔以 珥덈벑븰援 씠븯, 以묆냽怨좊벑븰援, 쟾臾몃 씠긽쑝濡 援щ텇븯쑝硫, 븣肄붿삱 꽠痍⑤뒗 鍮덈룄 諛 쓬二쇰웾뿉 臾닿븯寃 理쒓렐 1媛쒖썡 씠궡 븣肄붿삱 꽠痍 쑀臾대 議곗궗븯떎. 떊泥댄솢룞 遺議깆 븳援뼱뙋 援젣 떒臾명삎 떊泥댄솢룞 꽕臾몄(Korean version of International Physical Activity Questionnaire-Short Form)瑜 씠슜븯뿬 痢≪젙맂 二쇰떦 떊泥댄솢룞 궗떦웾(metabolic equivalent, MET)뿉 洹쇨굅븯뿬 媛뺣룄뿉 臾닿븯寃 二쇰떦 600 MET 씠븯瑜 떎떆븯뒗 寃쎌슦 떊泥댄솢룞 遺議깆쑝濡 젙쓽븯쑝硫20, 굺긽 寃쏀뿕 理쒓렐 1뀈媛 굺긽쓣 寃쏀뿕븳 寃쎌슦濡 젙쓽븯떎. 삉븳 洹쇨컧냼利앹 븘떆븘 洹쇨컧냼利 뿰援ъ뿉꽌 젣떆븳 湲곗뿉 洹쇨굅븯뿬 궗吏洹쇱쑁鍮꾩쑉(appendicular skeletal muscle mass index) 5.4 kg/m2 誘몃쭔뿉 빐떦븷 寃쎌슦濡 젙쓽븯쑝硫21, 怨⑤떎怨듭쬆 눜 寃쎈 怨⑤룄 T-score뿉 洹쇨굅븯뿬 –2.5 씠븯뿉 빐떦븷 寃쎌슦濡 젙쓽븯떎.

3. 옄猷 泥섎━ 諛⑸쾿

蹂 뿰援ъ쓽 紐⑤뱺 뿰냽삎 옄猷뚮뒗 룊洹±몴以렪李⑤줈 몴湲고븯쑝硫, 踰붿<삎 옄猷뚮뒗 媛 吏묐떒蹂 鍮꾩쑉(%)濡 몴湲고븯떎. 10뀈 궡 떖삁愿吏덊솚 쐞뿕怨 泥대젰 닔以뿉 뵲瑜 뿰냽삎 蹂씤쓽 룊洹 李⑥씠瑜 寃利앺븯湲 쐞빐 룆由 t-test瑜 씠슜븯쑝硫, 踰붿<삎 蹂씤쓽 鍮꾩쑉 李⑥씠瑜 寃利앺븯湲 쐞빐 援먯감遺꾩꽍(chi-square test)쓣 떎떆븯떎. 씠썑 씤吏湲곕뒫 븯뿉 븳 떖삁愿吏덊솚 쐞뿕怨 泥대젰 닔以쓽 蹂듯빀쟻씤 뿭븷쓣 寃利앺븯湲 쐞빐 뼇샇븳 泥대젰쓽 쐞뿕援(low-risk/fit), 遺덈웾븳 泥대젰쓽 쐞뿕援(low-risk/unfit), 뼇샇븳 泥대젰쓽 以묆냽怨좎쐞뿕援(intermediate- or high-risk/fit), 遺덈웾븳 泥대젰쓽 以묆냽怨좎쐞뿕援(intermediate- or high-risk/unfit)쑝濡 吏묐떒쓣 援щ텇븯떎. 삉븳 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以뿉 뵲瑜 痢≪젙蹂씤쓽 李⑥씠瑜 寃利앺븯湲 쐞빐 씪썝蹂웾遺꾩꽍(one-way analysis of variance)쓣 떎떆븯쑝硫, 吏묐떒 媛 쑀쓽븳 李⑥씠媛 엳뿀뜕 蹂씤뿉 빐 least significant difference 궗썑寃利(post-hoc)쓣 떎떆븯떎. 씠썑 씠遺꾪삎 濡쒖뒪떛 쉶洹遺꾩꽍(binary logistic regression)쓣 넻빐 95% 떊猶곗닔以(confidence interval, CI)뿉꽌 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以蹂 씤吏湲곕뒫 븯뿉 끂異쒕맆 듅궛鍮(odds ratio, OR)瑜 궛異쒗븯떎. 紐⑤뱺 넻怨꾨텇꽍 IBM SPSS for PC (version 22.0; IBM Corp., Armonk, NY, USA)瑜 씠슜븯쑝硫, 媛꽕 寃젙쓣 쐞븳 넻怨꾩쟻 쑀쓽닔以 α=0.05濡 꽕젙븯떎.

寃 怨

1. 10뀈 궡 떖삁愿吏덊솚 쐞뿕뿉 뵲瑜 痢≪젙蹂씤 鍮꾧탳

Table 2뒗 10뀈 궡 떖삁愿吏덊솚 쐞뿕뿉 뵲瑜 痢≪젙蹂씤쓣 鍮꾧탳븳 寃곌낵씠떎. 鍮꾧탳 寃곌낵 쐞뿕援곗뿉 鍮꾪빐 以묆냽怨좎쐞뿕援곗쓽 굹씠(p<0.001), 泥댁쭏웾吏닔(p<0.001), 뿀由щ몮젅(p=0.012), 떊泥댄솢룞 遺議(p=0.002), 怨⑤떎怨듭쬆(p=0.024), 닔異뺢린 삁븬(p<0.001), 怨좏삁븬 빟 蹂듭슜(p<0.001), 떦눊(p<0.001)媛 쑀쓽븯寃 넂 寃껋쑝濡 굹궗쑝硫, 씤吏湲곕뒫 젏닔(p<0.001), 떊옣(p=0.014), 援먯쑁닔以(p<0.001), 긽泥 洹쇰젰(p=0.015), 븯泥 洹쇰젰(p<0.001), 긽泥 쑀뿰꽦(p<0.001), 븯泥 쑀뿰꽦(p<0.001), 떖룓吏援щ젰(p<0.001) 쑀쓽븯寃 궙 寃껋쑝濡 굹궗떎.

Table 2 . Measured parameters according to 10-year FRS classification

VariableLow FRS (n=129)Intermediate or high FRS (n=179)p-value
FRS (%)6.7±1.717.7±6.8<0.001
K-MMSE score26.3±3.124.0±4.0<0.001
Age (yr)69.9±6.276.0±5.7<0.001
Menopause age (yr)49.6±5.849.2±4.80.508
Body mass index (kg/m2)23.8±2.825.2±3.3<0.001
Waist circumstance (cm)88.5±13.592.5±13.60.012
Education<0.001
Elementary or less52 (40.3)130 (72.6)
Middle/high school67 (51.9)48 (26.8)
College or higher10 (7.8)1 (0.6)
Alcohol consumption56 (43.4)71 (39.7)0.510
Physical inactivity45 (34.9)94 (52.5)0.002
Fall experience40 (31.0)44 (24.6)0.211
Sarcopenia28 (21.7)37 (20.7)0.826
Osteoporosis20 (15.5)47 (26.3)0.024
FRS parameter
HDL-C (mg/dL)57.0±13.149.8±13.4<0.001
TC (mg/dL)175.2±33.7179.6±40.00.305
SBP (mmHg)119.4±12.0134.5±11.8<0.001
Hypertension treated43 (33.3)126 (70.4)<0.001
Smoking2 (1.6)6 (3.4)0.327
Diabetes mellitus3 (2.3)58 (32.4)<0.001
Physical fitness parameter
Upper body strength (time/30 sec)19.0±4.917.7±4.30.015
Lower body strength (time/30 sec)15.6±4.613.6±3.6<0.001
Upper body flexibility (cm)−8.1±11.8−13.1±12.6<0.001
Lower body flexibility (cm)12.9±8.89.0±9.7<0.001
Aerobic endurance (time/2 min)103.8±17.194.1±22.6<0.001

Values are presented as mean±standard deviation or number (%).

FRS: Framingham risk score, K-MMSE: Korean version ofMini-Mental State Examination, HDL-C: high density lipoprotein cholesterol, TC: total cholesterol, SBP: systolic blood pressure.



2. 泥대젰 닔以뿉 뵲瑜 痢≪젙蹂씤 鍮꾧탳

Table 3 泥대젰 닔以뿉 뵲瑜 痢≪젙蹂씤쓣 鍮꾧탳븳 寃곌낵씠떎. 鍮꾧탳 寃곌낵 뼇샇븳 泥대젰뿉 鍮꾪빐 遺덈웾븳 泥대젰쓽 굹씠(p<0.001), 泥댁쭏웾吏닔(p=0.001), 뿀由щ몮젅(p=0.002), 떊泥댄솢룞 遺議(p<0.001), 10뀈 궡 떖삁愿吏덊솚 쐞뿕(p<0.001), 닔異뺢린 삁븬(p=0.001), 怨좏삁븬 빟 蹂듭슜(p=0.001), 떦눊(p=0.001)媛 쑀쓽븯寃 넂 寃껋쑝濡 굹궗쑝硫, 씤吏湲곕뒫 젏닔(p<0.001), 援먯쑁닔以(p<0.001), 怨좊룄 吏떒諛 肄쒕젅뒪뀒濡(p=0.026), 긽泥 洹쇰젰(p<0.001), 븯泥 洹쇰젰(p<0.001), 긽泥 쑀뿰꽦(p<0.001), 븯泥 쑀뿰꽦(p<0.001), 떖룓吏援щ젰(p<0.001) 쑀쓽븯寃 궙 寃껋쑝濡 굹궗떎.

Table 3 . Measured parameter according to physical fitness levels

VariableFit (n=153)Unfit (n=155)p-value
Physical fitness Z-score0.51±0.38−0.51±0.45<0.001
K-MMSE score26.4±2.823.5±4.1<0.001
Age (yr)70.7±6.676.2±5.4<0.001
Menopause age (yr)49.7±5.049.1±5.40.333
Body mass index (kg/m2)24.0±3.025.2±3.30.001
Waist circumstance (cm)88.4±12.693.3±14.20.002
Education<0.001
Elementary or less68 (44.4)114 (73.5)
Middle/high school78 (51.0)37 (23.9)
College or higher7 (4.6)4 (2.6)
Alcohol consumption61 (39.9)66 (42.6)0.629
Physical inactivity50 (32.7)89 (57.4)<0.001
Fall experience39 (25.5)45 (29.0)0.485
Sarcopenia28 (18.3)37 (23.9)0.231
Osteoporosis28 (18.3)39 (25.2)0.145
FRS parameter
FRS (%)10.8±6.215.4±8.1<0.001
HDL-C (mg/dL)54.6±13.851.1±13.50.026
TC (mg/dL)179.1±37.2176.4±37.90.526
SBP (mmHg)125.6±13.7130.7±13.90.001
Hypertension treated70 (45.8)99 (63.9)0.001
Smoking5 (3.3)3 (1.9)0.462
Diabetes melliuts19 (12.4)42 (27.1)0.001
Physical fitness parameter
Upper body strength (time/30 sec)20.6±3.915.8±3.9<0.001
Lower body strength (time/30 sec)16.9±3.912.0±2.8<0.001
Upper body flexibility (cm)−4.9±10.9−17.1±10.9<0.001
Lower body flexibility (cm)15.1±6.86.1±9.7<0.001
Aerobic endurance (time/2 min)108.4±14.788.2±21.5<0.001

Values are presented as mean±standard deviation or number (%).

Z-score: standard score, K-MMSE: Korean version of Mini-Mental State Examination, FRS: Framingham risk score, HDL-C: high density lipoprotein cholesterol, TC: total cholesterol, SBP: systolic blood pressure.



3. 10뀈 궡 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以뿉 뵲瑜 痢≪젙蹂씤 鍮꾧탳

Table 4뒗 10뀈 궡 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以뿉 뵲瑜 痢≪젙蹂씤쓣 鍮꾧탳븳 寃곌낵씠떎. 洹 寃곌낵, 씤吏湲곕뒫 젏닔(p<0.001), 굹씠(p<0.001), 泥댁쭏웾吏닔(p<0.001), 뿀由щ몮젅(p=0.004), 援먯쑁닔以(p<0.001), 떊泥댄솢룞 遺議(p<0.001), 怨좊룄 吏떒諛 肄쒕젅뒪뀒濡(p<0.001), 닔異뺢린 삁븬(p<0.001), 怨좏삁븬 빟 蹂듭슜(p<0.001), 떦눊(p<0.001), 긽泥 洹쇰젰(p<0.001), 븯泥 洹쇰젰(p<0.001), 긽泥 쑀뿰꽦(p<0.001), 븯泥 쑀뿰꽦(p<0.001), 떖룓吏援щ젰(p<0.001) 吏묐떒 媛 쑀쓽븳 李⑥씠媛 엳뒗 寃껋쑝濡 굹궗쑝硫, 굹癒몄 蹂씤뿉꽌뒗 쑀쓽븳 李⑥씠媛 뾾뒗 寃껋쑝濡 굹궗떎.

Table 4 . Measured parameters according to FRS and physical fitness-based classification

VariableLow FRS/fit (n=85)Low FRS/unfit (n=44)Intermediate or high FRS/fit (n=68)Intermediate or high FRS/unfit (n=111)p-value
FRS (%)6.6±1.9*,7.0±1.5*,16.0±5.7,§,18.7±7.2,§,*<0.001
Physical fitness Z-score0.60±0.43§,*,−0.46±0.34,*0.41±0.27,§,−0.53±0.48,*<0.001
K-MMSE score27.0±2.4§,*,25.0±3.8,25.7±3.2,23.0±4.1,§,*<0.001
Age (yr)68.2±5.9§,*,73.3±5.5,73.8±6.1,77.3±5.0,§,*<0.001
Menopause age (yr)50.1±5.448.7±6.449.2±4.549.2±5.00.501
Height (cm)153.2±5.4152.3±4.9151.6±4.5151.4±4.70.076
Body mass index (kg/m2)23.6±2.924.2±2.424.5±3.025.6±3.5,§,*<0.001
Waist circumstance (cm)86.9±13.291.7±13.590.2±11.693.9±14.50.004
Education<0.001
Elementary or less27 (31.8)25 (56.8)41 (60.3)89 (80.2)
Middle/high school52 (61.1)15 (34.1)26 (38.2)22 (19.8)
College or higher6 (7.1)4 (9.1)1 (1.5)0 (0)
Alcohol consumption32 (37.6)24 (54.5)29 (42.6)42 (37.8)0.235
Physical inactivity21 (24.7)24 (54.5)29 (42.6)65 (58.6)<0.001
Fall experience26 (30.6)14 (31.8)13 (19.1)31 (27.9)0.357
Sarcopenia17 (20.0)11 (25.0)11 (16.2)26 (23.4)0.612
Osteoporosis11 (12.9)9 (20.5)17 (25.0)30 (27.0)0.104
FRS parameter
HDL-C (mg/dL)57.7±13.1*,55.7±13.2*,50.6±13.7,§49.3±13.3,§<0.001
TC (mg/dL)180.8±164.4177.1±25.8177.1±38.7181.2±40.90.070
SBP (mmHg)119.1±12.8*,120.0±10.3*,133.8±9.7,§134.9±12.9,§<0.001
Hypertension treated25 (29.4)18 (40.9)45 (66.2)81 (73.0)<0.001
Smoking2 (2.4)0 (0)3 (4.4)3 (2.7)0.555
Diabetes mellitus2 (2.4)1 (2.3)17 (25.0)41 (36.9)<0.001
Physical fitness parameter
Upper body strength (time/30 sec)21.0±4.1§,14.9±3.7,*20.2±3.7§,16.1±3.9,*<0.001
Lower body strength (time/30 sec)17.5±4.3§,*,11.9±2.4,*16.1±3.2,§,12.1±2.9,*<0.001
Upper body flexibility (cm)−4.0±9.9§,−16.1±11.3,*−6.0±12.0§,−17.5±10.8,*<0.001
Lower body flexibility (cm)15.7±6.7§,7.4±9.8,*14.5±6.8§,5.6±9.7,*<0.001
Aerobic endurance (time/2 min)109.5±14.3§,92.9±17.0,*,106.9±15.2§,86.3±22.8,§,*<0.001

Values are presented as mean±standard deviation or number (%).

FRS: Framingham risk score, Z-score: standard score, K-MMSE: Korean version of Mini-Mental State Examination, HDL-C: high density lipoprotein cholesterol, TC: total cholesterol, SBP: systolic blood pressure.

*Significantly different from middle and high cardiovascular disease (CVD) risk/fit; significantly different from middle and high CVD risk/un-fit; significantly different from low CVD risk/fit; §significantly different from low CVD risk/un-fit.



4. 10뀈 궡 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以뿉 뵲瑜 씤吏湲곕뒫 븯 끂異 쐞뿕

Table 5뒗 10뀈 궡 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以뿉 뵲瑜 씤吏湲곕뒫 븯뿉 끂異쒕맆 쐞뿕쓣 궛異쒗븳 寃곌낵씠떎. 洹 寃곌낵, 뼇샇븳 泥대젰쓽 쐞뿕援(reference)뿉 鍮꾪빐 遺덈웾븳 泥대젰쓽 쐞뿕援(OR, 3.714; 95% CI, 1.324–10.418; p=0.013)怨 遺덈웾븳 泥대젰쓽 以묆냽怨좎쐞뿕援(OR, 11.345; 95% CI, 4.810–26.762; p<0.001)쓽 씤吏湲곕뒫 븯 끂異 쐞뿕씠 쑀쓽븯寃 넂 寃껋쑝濡 굹궗떎. 삉븳 굹씠瑜 蹂댁젙븳 紐⑤뜽 1怨 泥댁쭏웾吏닔, 援먯쑁닔以, 떊泥댄솢룞 遺議깆쓣 異붽쟻쑝濡 蹂댁젙븳 紐⑤뜽 2뿉꽌 媛곴컖 뼇샇븳 泥대젰쓽 쐞뿕援(reference)뿉 鍮꾪빐 遺덈웾븳 泥대젰쓽 以묆냽怨좎쐞뿕援(model 1: OR, 5.847; 95% CI, 2.286–14.958; p<0.001; model 2: OR, 3.876; 95% CI, 1.400–10.726; p=0.009)쓽 씤吏湲곕뒫 븯 끂異 쐞뿕씠 쑀쓽븯寃 넂 寃껋쑝濡 굹궗떎.

Table 5 . Odds ratios (ORs) of cognitive impairment according to 10-year FRS and physical fitness-based classification

VariableModel 0Model 1Model 2



OR (95% CI)p-valueOR (95% CI)p-valueOR (95% CI)p-value
Low FRS/fit1 (reference)1 (reference)1 (reference)
Low FRS/unfit3.714 (1.324−10.418)0.0132.542 (0.875−7.383)0.0861.669 (0.522−5.341)0.388
Intermediate or high FRS/fit2.634 (0.987−7.028)0.0531.678 (0.599−4.701)0.3251.227 (0.418−3.600)0.709
Intermediate or high FRS/unfit11.345 (4.810−26.762)<0.0015.847 (2.286−14.958)<0.0013.876 (1.400−10.726)0.009

Model 0: unadjusted, model 1: adjusted for age, model 2: adjusted for model 1 plus body mass index, education, and physical inactivity.

FRS: Framingham risk score, CI: confidence interval.


怨 李

蹂 뿰援щ뒗 슦由щ굹씪 뿬꽦 끂씤 308紐낆쓣 긽쑝濡 떖삁愿吏덊솚怨 泥대젰씠 씤吏湲곕뒫 븯뿉 빐 뼱뼚븳 뿭븷쓣 븯뒗吏 寃利앺븯뒗 寃껋쓣 二쇱슂 紐⑹쟻쑝濡 븯떎. 癒쇱 떖삁愿吏덊솚 쐞뿕뿉 뵲瑜 씤吏湲곕뒫 젏닔瑜 鍮꾧탳븳 寃곌낵 쐞뿕援곗뿉 鍮꾪빐 以묆냽怨좎쐞뿕援곗쓽 씤吏湲곕뒫 젏닔媛 쑀쓽븯寃 궙 寃껋쑝濡 굹궗쑝硫, 泥대젰뿉 뵲瑜 씤吏湲곕뒫 젏닔瑜 鍮꾧탳븳 寃곌낵 뼇샇븳 泥대젰 吏묐떒뿉 鍮꾪빐 遺덈웾븳 泥대젰 吏묐떒쓽 씤吏湲곕뒫 젏닔媛 쑀쓽븯寃 궙 寃껋쑝濡 굹궗떎. 삉븳 떖삁愿吏덊솚 쐞뿕 諛 泥대젰뿉 洹쇨굅븯뿬 4吏묐떒쑝濡 遺꾨쪟븳 뮘 씤吏湲곕뒫 븯 끂異 쐞뿕쓣 궛異쒗븳 寃곌낵, 以묆냽怨좎쐞뿕援 諛 遺덈웾븳 泥대젰 吏묐떒쓽 씤吏湲곕뒫 븯 끂異 쐞뿕씠 媛옣 넂 寃껋쑝濡 굹궗떎.

쟾 꽭怨꾩쟻씤 怨좊졊솕濡 씤빐 끂뀈湲 留뚯꽦눜뻾꽦 吏덊솚뿉 븳 愿떖씠 袁몄엳 利앷븯怨 엳뒗 媛슫뜲 2018뀈쓣 湲곗쑝濡 슦由щ굹씪 끂씤쓽 寃쎈룄씤吏옣븷 쑀蹂묐쪧 빟 22.6%씤 寃껋쑝濡 굹굹 씠뿉 븳 떖媛곸꽦씠 吏냽쟻쑝濡 몢릺怨 엳뒗 떎젙씠떎1. 씠踰 뿰援ъ뿉꽌룄 吏뿭궗쉶 뿬꽦 끂씤쓽 씤吏湲곕뒫 븯 鍮꾩쑉쓣 議곗궗븳 寃곌낵, 쟾泥 긽옄 以 빟 28.2% (n=87)媛 씤吏湲곕뒫 븯瑜 蹂댁씤 寃껋쑝濡 굹궗떎. 씠 寃곌낵뒗 援媛 떒쐞 뿭븰議곗궗뿉 鍮꾪빐꽌뒗 떎냼 넂寃 굹궃 닔移섏씤뜲, 뿰援ъ쓽 긽쓣 씤吏湲곕뒫 븯뿉 痍⑥빟븳 吏묐떒씤 뿬꽦쑝濡 援븳뻽떎뒗 젏뿉꽌 湲곗씤븳 寃껋쑝濡 깮媛곷맂떎22.

씤吏湲곕뒫 븯쓽 쐞뿕씤옄濡쒕뒗 씤援ъ궗쉶븰쟻 슂씤, 깮臾쇳븰쟻 슂씤, 嫄닿컯愿젴 슂씤 벑씠 몴쟻씤 寃껋쑝濡 븣젮졇 엳쑝硫3,4, 理쒓렐 뿰援ъ뿉꽌 떖삁愿吏덊솚 삉븳 씤吏湲곕뒫 븯쓽 쐞뿕슂씤쑝濡 蹂닿퀬릺怨 엳떎10. 븳렪, 삤옖 뿰援щ 넻빐 洹쇰젰, 떖룓吏援щ젰 벑쓣 룷븿븳 떎뼇븳 삎깭쓽 泥대젰 以묐뀈 씠썑 떖삁愿吏덊솚 쐞뿕쓣 媛먯냼떆궎뒗 寃껋쑝濡 븣젮졇 엳쑝硫, 끂뀈湲 씤吏湲곕뒫 븯瑜 삁諛⑺븯뒗 뜲뿉 湲띿젙쟻씤 뿭븷쓣 븯뒗 寃껋쑝濡 븣젮졇 엳떎11,12. 洹몃윭굹 泥대젰 닔以씠 떖삁愿吏덊솚 쐞뿕 臾쇰줎 씤吏湲곕뒫 븯뿉 븳 二쇱슂 룆由 삁痢≪씤옄엫뿉룄 遺덇뎄븯怨, 遺遺꾩쓽 뿰援щ뒗 떖삁愿吏덊솚怨 씤吏湲곕뒫 븯쓽 떒렪쟻씤 뿰愿꽦 寃利앹뿉留 援븳릺뼱 엳뒗 떎젙씠떎. 씠뿉 씠踰 뿰援ъ뿉꽌뒗 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以뿉 洹쇨굅븯뿬 씤吏湲곕뒫 젏닔瑜 鍮꾧탳븯怨, 쐞뿕援 諛 뼇샇븳 泥대젰 吏묐떒뿉 鍮꾪빐 떖삁愿吏덊솚 以묆냽怨좎쐞뿕援곌낵 遺덈웾븳 泥대젰 以 뼱뒓 븯굹뿉 빐떦븯뒗 寃쎌슦 씤吏湲곕뒫 젏닔媛 쑀쓽븯寃 궙쓣 肉먮쭔 븘땲씪 紐⑤몢 빐떦븯뒗 寃쎌슦뿉 媛옣 궙 寃껋쑝濡 굹궗떎. 씠윭븳 씠踰 뿰援ъ쓽 寃곌낵뒗 쑀읇 以묆냽怨좊졊옄뿉寃뚯꽌 泥댁쭏웾吏닔 떊泥댄솢룞 씤吏湲곕뒫 븯뿉 빐 蹂듯빀쟻씤 뿭븷쓣 븷 닔 엳떎怨 蹂닿퀬븳 Memel 벑23쓽 뿰援щ굹, 怨좏삁븬쓣 吏꾨떒諛쏆 븘떆븘 以묆냽怨좊졊옄뿉寃뚯꽌 룊삎꽦, 洹쇰젰, 洹쇱援щ젰씠 궙쓣닔濡 씤吏湲곕뒫 븯뿉 끂異쒕맆 쐞뿕씠 넂븯떎怨 蹂닿퀬븳 Zuo 벑24쓽 뿰援ъ 쑀궗븳 寃곌낵씠떎. 씠윭븳 꽑뻾뿰援ъ 씠踰 뿰援ъ쓽 寃곌낵瑜 蹂 븣, 끂뀈湲 쟻젅븳 떊泥댄솢룞쓣 넻븳 泥대젰 愿由щ뒗 떖삁愿吏덊솚뿉 끂異쒕맂 긽쓽 씤吏湲곕뒫 븯瑜 삁諛⑺븷 닔 엳쓣 肉먮쭔 븘땲씪 洹 쐞뿕씤옄濡 씤븳 씤吏湲곕뒫 븯瑜 셿솕븷 닔 엳뒗 슚怨쇱쟻씤 諛⑸쾿씠 맆 닔 엳떎怨 蹂닿퀬븳 뿰援щ뱾怨 쑀궗븳 留λ씫뿉꽌 빐꽍맂떎25,26.

삉븳 꽭遺꾪솕븳 떖삁愿吏덊솚 쐞뿕 諛 泥대젰 닔以 吏묐떒뿉 洹쇨굅븯뿬 씤吏湲곕뒫 븯뿉 끂異쒕맆 쐞뿕쓣 궛異쒗븳 寃곌낵, 遺덈웾븳 泥대젰뿉 빐떦븷 寃쎌슦 씤吏湲곕뒫 븯 끂異 쐞뿕씠 넂 寃껋쑝濡 굹궗쑝硫, 듅엳 泥대젰씠 遺덈웾븳 닔以씠硫댁꽌 떖삁愿吏덊솚 以묆냽怨좎쐞뿕援곗뿉 빐떦븷 寃쎌슦 씤吏湲곕뒫 븯 끂異 쐞뿕 씤援ъ궗쉶븰쟻 슂씤 諛 嫄닿컯愿젴 슂씤쓣 蹂댁젙븳 썑뿉룄 넻怨꾩쟻쑝濡 쑀쓽븳 寃껋쑝濡 솗씤릺뿀떎. 씠윭븳 蹂 뿰援ъ쓽 寃곌낵뒗 샇二 끂씤뿉寃뚯꽌 뿰졊 利앷濡 씤븳 씤吏湲곕뒫 븯뿉 빐 룞留 깂꽦룄 泥대젰 蹂듯빀쟻씤 뿭븷쓣 븷 닔 엳떎怨 蹂닿퀬븳 Kennedy 벑27쓽 뿰援ъ 슦由щ굹씪 끂씤뿉寃뚯꽌 鍮꾨쭔씠硫댁꽌 븙젰씠 媛옣 궙 吏묐떒쓽 씤吏湲곕뒫 븯媛 媛옣 鍮좊Ⅴ寃 굹궗떎怨 蹂닿퀬븳 Jeong 벑28쓽 뿰援ъ 씪移섑븯뒗 寃곌낵씠떎. 씠윭븳 꽑뻾뿰援щ뱾怨 蹂 뿰援ъ쓽 寃곌낵瑜 蹂대㈃, 끂뀈湲 씤吏湲곕뒫 븯뿉 엳뼱 떖삁愿吏덊솚怨 떊泥댄솢룞 끂뀈湲 씤吏湲곕뒫 븯뿉 빐 媛곴컖쓽 룆由쎌삁痢≪씤옄濡 옉슜븷 닔 엳쓬 臾쇰줎, 洹쒖튃쟻씤 떊泥댄솢룞쓣 넻븳 떖삁愿吏덊솚 쐞뿕씤옄쓽 媛쒖꽑 씤吏湲곕뒫쓽 븯瑜 삁諛⑺븯뒗뜲 엳뼱 湲띿젙쟻씤 뿭븷쓣 쑀룄븯뒗 寃껋쑝濡 굹궗떎怨 蹂닿퀬븳 꽑뻾뿰援ъ 쑀궗븳 留λ씫뿉꽌 빐꽍븷 닔 엳떎29,30.

洹몃윭굹 씠踰 뿰援щ뒗 떎쓬怨 媛숈 紐 媛吏 젣븳젏씠 엳떎. 泥レ㎏, 뿰援ъ쓽 긽옄媛 吏뿭궗쉶 뿬꽦 끂씤뿉 援븳릺뿀湲곗뿉 異뷀썑 뿰援ъ쓽 踰붿쐞瑜 솗븯뿬 슦由щ굹씪 쟾泥 끂씤 諛 궓꽦뿉寃 엳뼱 떖삁愿吏덊솚 諛 泥대젰怨 씤吏湲곕뒫 븯쓽 뿰愿꽦뿉 빐 寃利앺븷 븘슂媛 엳떎. 몮吏, 씠踰 뿰援щ뒗 슒떒쟻쑝濡 議곗궗맂 뿰援щ줈 蹂닔 媛꾩쓽 씤怨쇨怨꾨 꽕紐낇븯湲곗뿉뒗 젣븳쟻씠誘濡, 異뷀썑 異붿쟻愿李곗쓣 넻빐 씤吏湲곕뒫 븯 諛쒖깮뿉 븳 떖삁愿吏덊솚怨 泥대젰쓽 씤怨쇨怨꾨 寃利앺븳 뿰援ш 븘슂븷 寃껋쑝濡 깮媛곹븳떎. 뀑吏, 씠踰 뿰援ъ뿉꽌 씤吏湲곕뒫怨 愿젴맂 蹂닔뒗 꽕臾몄뿉留 援븳븯쑝誘濡, 異뷀썑 뿰援ъ뿉꽌뒗 쁺긽븰쟻 슂씤 諛 깮臾쇳븰쟻 슂씤 벑쓣 異붽쟻쑝濡 寃利앺븯뿬 蹂대떎 룷愿꾩쟻씤 寃利앹씠 븘슂븷 寃껋쑝濡 깮媛곷맂떎.

걹쑝濡 씠踰 뿰援ъ쓽 寃곌낵瑜 醫낇빀빐蹂대㈃, 슦由щ굹씪 끂씤쓽 떖삁愿吏덊솚 쐞뿕룄 利앷 諛 泥대젰 븯媛 씤吏湲곕뒫 븯뿉 빐 蹂듯빀쟻씤 뿭븷쓣 븷 닔 엳떎怨 뙋떒맂떎. 뵲씪꽌 끂뀈湲 씤吏湲곕뒫 븯 삁諛⑹쓣 쐞븳 以묒옱濡쒕뒗 깮솢뒿愿 媛쒖꽑쓣 넻븳 떖삁愿吏덊솚 愿由 諛 洹쒖튃쟻씤 떊泥댄솢룞쓣 넻븳 泥대젰 利앹쭊쓣 룞떆뿉 몴쟻쑝濡 怨좊젮빐빞 븳떎怨 븷 닔 엳寃좊떎.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Conceptualization: IL, HK. Data curation: IL, HK. Formal analysis: IL, HK. Funding acquisition: IL. Methodology: IL, HK. Visualization: IL, HK. Writing–original draft: IL, HK. Writing–review & editing: IL, HK.

References
  1. Ministry of Health and Welfare. Korean dementia observatory 2019. Sejong, KR: Ministry of Health and Welfare, 2020.
  2. Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002;59:1594-9.
    Pubmed CrossRef
  3. Yaffe K, Hoang TD, Byers AL, Barnes DE, Friedl KE. Lifestyle and health-related risk factors and risk of cognitive aging among older veterans. Alzheimers Dement 2014;10(3 Suppl):S111-21.
    Pubmed CrossRef
  4. Colijn MA, Grossberg GT. Amyloid and tau biomarkers in subjective cognitive impairment. J Alzheimers Dis 2015;47:1-8.
    Pubmed CrossRef
  5. Arntzen KA, Schirmer H, Wilsgaard T, Mathiesen EB. Impact of cardiovascular risk factors on cognitive function: the Tromsø study. Eur J Neurol 2011;18:737-43.
    Pubmed CrossRef
  6. Akinyemi RO, Mukaetova-Ladinska EB, Attems J, Ihara M, Kalaria RN. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer's disease and vascular dementia. Curr Alzheimer Res 2013;10:642-53.
    Pubmed CrossRef
  7. Sisante JV, Vidoni ED, Kirkendoll K, et al. Blunted cerebrovascular response is associated with elevated beta-amyloid. J Cereb Blood Flow Metab 2019;39:89-96.
    Pubmed KoreaMed CrossRef
  8. Wang R, Fratiglioni L, Kalpouzos G, et al. Mixed brain lesions mediate the association between cardiovascular risk burden and cognitive decline in old age: a population-based study. Alzheimers Dement 2017;13:247-56.
    Pubmed CrossRef
  9. Viticchi G, Falsetti L, Buratti L, et al. Framingham risk score and the risk of progression from mild cognitive impairment to dementia. J Alzheimers Dis 2017;59:67-75.
    Pubmed CrossRef
  10. Song R, Xu H, Dintica CS, et al. Associations between cardiovascular risk, structural brain changes, and cognitive decline. J Am Coll Cardiol 2020;75:2525-34.
    Pubmed CrossRef
  11. Shim J, Yoo HJ. Effects of handgrip strength on 10-year cardiovascular risk among the Korean middle-aged population: the Korea National Health and Nutrition Examination Survey 2014. Healthcare (Basel) 2020;8:458.
    Pubmed KoreaMed CrossRef
  12. Emerenziani GP, Vaccaro MG, Izzo G, et al. Prediction equation for estimating cognitive function using physical fitness parameters in older adults. PLoS One 2020;15:e0232894.
    Pubmed KoreaMed CrossRef
  13. Tikkanen E, Gustafsson S, Ingelsson E. Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: longitudinal analyses in the UK Biobank Study. Circulation 2018;137:2583-91.
    Pubmed KoreaMed CrossRef
  14. Lee MR, Jung SM, Kim HS, Kim YB. Association of muscle strength with cardiovascular risk in Korean adults: findings from the Korea National Health and Nutrition Examination Survey (KNHANES) VI to VII (2014-2016). Medicine (Baltimore) 2018;97:e13240.
    Pubmed KoreaMed CrossRef
  15. Chou MY, Nishita Y, Nakagawa T, et al. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr 2019;19:186.
    Pubmed KoreaMed CrossRef
  16. Kim KH, Park SK, Lee DR, Lee J. The relationship between handgrip strength and cognitive function in elderly Koreans over 8 years: a prospective population-based study using Korean longitudinal study of ageing. Korean J Fam Med 2019;40:9-15.
    Pubmed KoreaMed CrossRef
  17. Kim TH, Jhoo JH, Park JH, et al. Korean version of mini mental status examination for dementia screening and its' short form. Psychiatry Investig 2010;7:102-8.
    Pubmed KoreaMed CrossRef
  18. D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117:743-53.
    Pubmed CrossRef
  19. Rikli RE, Jones CJ. .
  20. Oh JY, Yang YJ, Kim BS, Kang JH. Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form. J Korean Acad Fam Med 2007;28:532-41.
  21. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101.
    Pubmed CrossRef
  22. Lyu J, Kim HY. Gender-specific incidence and predictors of cognitive impairment among older Koreans: findings from a 6-year prospective cohort study. Psychiatry Investig 2016;13:473-9.
    Pubmed KoreaMed CrossRef
  23. Memel M, Bourassa K, Woolverton C, Sbarra DA. Body mass and physical activity uniquely predict change in cognition for aging adults. Ann Behav Med 2016;50:397-408.
    Pubmed CrossRef
  24. Zuo M, Gan C, Liu T, Tang J, Dai J, Hu X. Physical predictors of cognitive function in individuals with hypertension: evidence from the CHARLS Basline Survey. West J Nurs Res 2019;41:592-614.
    Pubmed CrossRef
  25. Machii N, Kudo A, Saito H, et al. Walking speed is the sole determinant criterion of sarcopenia of mild cognitive impairment in Japanese elderly patients with type 2 diabetes mellitus. J Clin Med 2020;9:2133.
    Pubmed KoreaMed CrossRef
  26. Chan JS, Yan JH, Payne VG. The impact of obesity and exercise on cognitive aging. Front Aging Neurosci 2013;5:97.
    Pubmed KoreaMed CrossRef
  27. Kennedy G, Meyer D, Hardman RJ, Macpherson H, Scholey AB, Pipingas A. Physical fitness and aortic stiffness explain the reduced cognitive performance associated with increasing age in older people. J Alzheimers Dis 2018;63:1307-16.
    Pubmed CrossRef
  28. Jeong SM, Choi S, Kim K, Kim SM, Kim S, Park SM. Association among handgrip strength, body mass index and decline in cognitive function among the elderly women. BMC Geriatr 2018;18:225.
    Pubmed KoreaMed CrossRef
  29. Chang YK, Chu CH, Chen FT, Hung TM, Etnier JL. Combined effects of physical activity and obesity on cognitive function: independent, overlapping, moderator, and mediator models. Sports Med 2017;47:449-68.
    Pubmed CrossRef
  30. Stewart RAH, Held C, Krug-Gourley S, et al. Cardiovascular and lifestyle risk factors and cognitive function in patients with stable coronary heart disease. J Am Heart Assoc 2019;8:e010641.
    Pubmed KoreaMed CrossRef