search for



Kinetic Analysis of Crouching Start Depending on Taping Applied to Hamstring in Elite Male Sprinters
Korean J Sports Med 2021;39:117-126
Published online September 1, 2021;  https://doi.org/10.5763/kjsm.2021.39.3.117
© 2021 The Korean Society of Sports Medicine.

Taegyu Kim1, Jong-Chul Park1, Jae Myoung Park2, Hokyung Choi3

1Department of Marine Sports, Pukyong National University, Busan, 2Department of Youth Guidance and Sport Education, Korea National Sport University, Seoul, 3Department of Sport Science, Korea Institute of Sport Science, Seoul, Korea
Correspondence to: Hokyung Choi
Department of Sport Science, Korea Institute of Sport Science, 727 Hwarang-ro, Nowon-gu, Seoul 01794, Korea
Tel: 竊82-2-970-9572, Fax: 竊82-2-970-9502, E-mail: ghruddl82@gmail.com
Received May 17, 2021; Revised July 13, 2021; Accepted July 14, 2021.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Purpose: This study was aimed to identify the effect of taping applied to both hamstring on the horizontal velocity of the center of mass (COM) and the angle and peak angular velocity of the knee and hip joints in the sagittal plane during the crouching start.
Methods: Seven elite sprinters (three male 100-m sprinters and four male 400-m sprinters) who enrolled in Korea National Sport University and placed in the National Sports Festival participated in this study. The crouching start is divided into four separate phases by the five events: set position (E1), rear block exit (E2), initial contact of rear leg (E3), take-off of rear leg (E4), and initial contact of front leg (E5). The angle (°) of knee and hip joints in each event and the velocity of COM (m/sec) and peak angular velocity (°/sec) in each phase were analyzed before and after the application of kinesiology taping (KT) on both hamstring and placebo taping (PT).
Results: There were no significant differences in the velocity of COM and the angle and peak angular velocity of knee joint among the taping conditions. In 400-m sprinters, the front hip joint with KT or PT flexed less than without taping at E1 (p=0.039), E4 (p=0.018), and E5 (p=0.018). Also, during the phase from E1 to E2, the rear hip joint with both KT and PT extended at lower angular velocity compared to without taping (p=0.018).
Conclusion: While taping may be a beneficial practice for elite sports performance, the application of KT on both hamstring does not enhance sprinters’ start performance.
Keywords : Sprinter, Crouching start, Kinesio-taping, Hamstring
꽌 濡

젙吏맂 긽깭뿉꽌 떊泥 吏곸엫쓽 냽룄瑜 理쒕솕븷 닔 엳뒗 뒫젰 留롮 뒪룷痢 醫낅ぉ뿉꽌 寃쎄린젰쓣 寃곗젙븯뒗 以묒슂븳 슂냼 以 븯굹씠떎1. 듅엳, 60 m 100 m, 200 m 諛 400 m쓽 떒嫄곕━ 쑁긽 꽭遺醫낅ぉ뿉꽌뒗 겕씪슦移 뒪듃 룞옉 닔뻾뒫젰怨 뒪듃 룞옉 씠썑 媛냽븯뒗 뒫젰씠 寃쎄린 寃곌낵뿉 留ㅼ슦 겙 쁺뼢쓣 誘몄튂怨2, 떎젣 100 m 쑁긽寃쎄린 醫낅ぉ뿉꽌 뒪똿 釉붾줉쓣 踰쀬뼱굹뒗 떆젏(block clearance)遺꽣 寃쎄린 湲곕줉쓽 5%媛 릺뒗 떆젏 씠궡뿉 뒪봽由고듃 꽑닔媛 떆빀뿉꽌 諛쒗쐶븯뒗 理쒓퀬 냽룄쓽 1/3씠 떖꽦릺誘濡 뒪똿 釉붾줉쓣 踰쀬뼱굹뒗 룞븞 쐞履/븘옒履 삉뒗 븞履/媛履쎌쑝濡 諛쒖깮븯뒗 떊泥 吏곸엫쓣 議곗젅븯뿬 븵履쎌쑝濡 吏곸씠뒗 냽룄瑜 理쒕솕븷 닔 엳뒗 듅젙 湲곗닠씠 留ㅼ슦 以묒슂븯떎 븷 닔 엳떎3,4. 씠윭븳 씠쑀濡 留롮 꽑뻾뿰援ъ뿉꽌뒗 겕씪슦移 뒪듃 以鍮꾩옄꽭(set position)뿉꽌쓽 釉붾줉怨 떊泥대텇젅 쐞移, 異쒕컻떊샇 썑쓽 泥닿컙怨 븯吏 吏곸엫 벑쓣 룷븿븯뿬 뒪봽由고듃 뒪듃 愿젴맂 떎뼇븳 깮泥댁뿭븰쟻 痢〓㈃쓣 솗씤븯怨5, 洹 寃곌낵 鍮좊Ⅸ 뒪봽由고꽣媛 洹몃젃吏 븡 뒪봽由고꽣蹂대떎 以鍮꾩옄꽭뿉꽌 뼇履 뿁뜦愿젅怨 븵履 臾대쫷愿젅 뜑 援쏀옒(flexion)씠 릺뼱엳怨 뮘履 臾대쫷愿젅 뜑 룄(extension)씠 릺뼱엳뒗 寃껋쑝濡 蹂닿퀬릺뿀쑝硫5-7, 100 m 湲곕줉씠 10.8 sec 씠븯씤 슦닔븳 꽑닔媛 洹몃젃吏 븡 꽑닔뿉 鍮꾪빐 뒪똿 釉붾줉쓣 踰쀬뼱굹뒗 떆젏뿉꽌 떊泥 臾닿쾶以묒떖(center of mass, COM)쓽 쟾諛(forward) 吏곸엫 냽룄媛 뜑 넂 寃껋쑝濡 蹂닿퀬릺뿀떎7. 湲곕줉씠 鍮꾩듂븳 꽑닔吏묐떒 궡뿉꽌룄 떊泥댁쟻 듅꽦怨 媛숈 떎뼇븳 썝씤뿉 뵲씪 뒪봽由고듃 뒪듃 룞옉뿉꽌쓽 슫룞븰쟻 李⑥씠媛 엳떎怨 꽕紐낅릺湲곕룄 븯굹3, 以鍮꾩옄꽭(set position) 泥 踰덉㎏ 諛 몢 踰덉㎏ 뒪뀦 벑 뒪듃 룞옉뿉꽌 븯吏 愿젅 吏곸엫쓽 떆湲(timing) 겕湲(magnitude)뒗 뒪봽由고듃 슫룞닔뻾뒫젰쓣 寃곗젙븯뒗 슂씤쑝濡 뿬쟾엳 媛뺤“릺怨 엳떎8.

뒪똿 釉붾줉쓣 踰쀬뼱궃 썑 泥 엯媛 援ш컙(first stance phase)쓣 룷븿븳 蹂솚 援ш컙(transition phase) 냽룄媛 媛옣 鍮좊Ⅴ寃 利앷븯뒗 援ш컙쑝濡9, 理쒓퀬 냽룄 援ш컙뿉 鍮꾪빐 吏硫댁젒珥됱떆媛(contact time) 湲멸퀬 鍮꾪뻾 떆媛(flight time) 吏㏃ 寃껋쑝濡 蹂닿퀬릺뿀怨4, 슦닔븳 꽑닔쓽 寃쎌슦 씠윭븳 듅꽦씠 뜑 몢뱶윭吏寃 굹굹뒗 寃껋쑝濡 솗씤릺뿀떎3. 씠뒗 異붿쭊젰씠 깮꽦릺뒗 援ш컙쓣 利앷븿쑝濡쒖뜥 媛냽룄瑜 넂씠湲 쐞븳 쟾왂쑝濡 깮媛곷릺뒗뜲3, 씠윭븳 異붿쭊젰쓣 諛쒖깮븯뒗 뜲뿉 뮘꽇떎由ш렐怨 蹂쇨린洹(몦洹, gluteus muscles)怨 媛숈 뿁뜦愿젅 룄洹쇱씠 二쇰맂 뿭븷쓣 븯뒗 寃껋쑝濡 븣젮졇 엳떎10. 삉븳 뒪봽由고듃 닔뻾뒫젰怨 媛뺥븳 젙쟻 愿怨꾧 엳뒗 臾대쫷愿젅 룄洹쇱쓽 理쒕 넗겕媛믪씠 而ㅼ쭏닔濡 씠뿉 븳 湲명빆洹쇱씤 뮘꽇떎由ш렐쓽 겕湲 삉븳 利앷븳떎怨 꽕紐낇븯硫, 뒪봽由고듃 닔뻾뒫젰쓣 뼢긽븿뿉 엳뼱 뮘꽇떎由ш렐쓽 以묒슂꽦쓣 媛뺤“븯떎11. 븳 꽑뻾뿰援ъ뿉꽌뒗 뒪봽由고꽣쓽 뮘꽇떎由ш렐 슒떒硫댁쟻(cross-sectional area) 40 m 뒪봽由고듃쓽 理쒓퀬냽룄(maximum velocity) 諛 湲곕줉떆媛꾧낵 諛젒븳 愿젴꽦씠 엳떎怨 꽕紐낇븯怨12,13, 뒪봽由고똿 룞븞 닔룊쟻 吏硫대컲젰(horizontal ground reaction force)씠 겙 뒪봽由고꽣뒗 떎瑜 븯吏 洹쇱쑁뿉 鍮꾪빐 뮘꽇떎由ш렐 솢꽦룄媛 넂 寃껋씠 솗씤릺뿀떎14.

뀒씠븨 쇅쟻 븞젙꽦 젣怨듦낵 吏곸엫 議곗젅, 怨좎쑀닔슜媛먭컖 솢꽦솕 諛 뿰遺議곗쭅뿉 媛빐吏뒗 뒪듃젅뒪 옱遺꾨같(redistribution) 벑쓽 紐⑹쟻쑝濡 뒪룷痢 쁽옣뿉꽌 쓷엳 솢슜릺뒗 鍮좊Ⅴ怨 媛꾨떒븳 諛⑸쾿씠떎15. 듅엳, 뒪룷痢 쁽옣뿉꽌 꼸由 궗슜릺怨 엳뒗 궎꽕떆삱濡쒖 뀒씠븨(kinesiology taping, KT) 鍮꾪깂젰꽦 뀒씠봽瑜 궗슜븯뒗 쟾넻쟻씤 뀒씠븨(traditional taping)怨쇰뒗 떖由 뵾遺 쑀궗븳 깂젰꽦쓣 吏땶 떊異뺤꽦씠 엳뒗 硫 냼옱쓽 뀒씠봽瑜 궗슜븯뒗 諛⑸쾿쑝濡, 넻利 셿솕 由쇳봽 諛 삁븸닚솚 珥됱쭊, 洹 寃쎈젴(muscle spasm) 媛먯냼肉 븘땲씪 洹좏삎怨 젣옄由 硫由щ쎇湲 벑 뒪룷痢좎 愿젴맂 湲곕뒫쟻 슫룞닔뻾뒫젰뿉룄 湲띿젙쟻씤 슚怨쇨 엳뒗 寃껋쑝濡 븣젮졇 엳떎16. 삉븳 KT 쟻슜 뵾遺쓽 湲곌퀎쟻 닔슜湲(mechanoreceptor)瑜 솢꽦솕븯뿬 以묒텛떊寃쎄퀎 궡 議곗젅 硫붿빱땲利(modulatory mechanism)쓣 옄洹뱁븿쑝濡쒖뜥 洹쇱쑁 湲댁옣룄(tone)瑜 議곗젅븯嫄곕굹 洹 솢꽦룄瑜 뼢긽떆궗 닔 엳떎怨 蹂닿퀬릺뿀떎17,18. 洹몃윭굹, KT瑜 옄二 쟻슜븯뒗 嫄닿컯븳 꽦씤쓣 긽쑝濡 뀒씠븨 쟻슜 쟾썑쓽 븙젰(grip strength)쓣 鍮꾧탳遺꾩꽍븳 뿰援ъ뿉꽌뒗 뀒씠븨 쟻슜 썑쓽 븙젰씠 뀒씠븨 쟾蹂대떎 利앷븯쑝굹 洹 슚怨쇰뒗 誘몃명븯떎怨 뼵湲됲븯怨19, 嫄닿컯븳 20 뿬꽦쓣 긽쑝濡 떆뻾븳 뿰援ъ뿉꽌룄 꽇떎由щ꽕媛덈옒洹(quadriceps femoris)쓽 뀒씠븨 쟻슜씠 洹 솢꽦룄쓽 蹂솕굹 븯吏 湲곕뒫 뼢긽뿉 湲곗뿬븯吏 븡뒗떎20怨 꽕紐낇븯뒗 벑 留롮 꽑뻾뿰援ъ뿉꽌 KT쓽 슚怨쇱뿉 빐 씪移섑븯吏 븡뒗 寃곌낵瑜 蹂댁뿬二쇨퀬 엳떎. 삉븳 遺遺꾩쓽 꽑뻾뿰援щ뒗 솚옄 삉뒗 젅겕由ъ뿉씠뀡 뒪룷痢좎뿉 李몄뿬븯뒗 鍮꾩슫룞꽑닔瑜 긽쑝濡 닔뻾븳 뿰援ъ씠誘濡, 솗씤맂 寃곌낵瑜 뿕由ы듃 슫룞꽑닔뿉寃 씪諛섑솕븯뒗 뜲뿉뒗 뼱젮씠 엳怨16, 뿕由ы듃 슫룞꽑닔瑜 긽쑝濡 닔뻾븳 꽑뻾뿰援ъ뿉꽌 醫낅ぉ쓽 듅꽦쓣 怨좊젮븯吏 븡 듅젙븳 吏곸엫쓽 洹 솢꽦룄瑜 솗씤븳 寃껋 슫룞꽑닔쓽 슫룞닔뻾뒫젰뿉 誘몄튂뒗 슚怨쇱뿉 븳 湲곗쟾쓣 꽕紐낇븯뒗 뜲뿉 븳怨꾧 엳쓣 寃껋쑝濡 깮媛곷맂떎21.

뵲씪꽌, 蹂 뿰援ъ뿉꽌뒗 嫄닿컯븳 20 궓옄 떒嫄곕━ 뿕由ы듃 꽑닔瑜 긽쑝濡 뮘꽇떎由ш렐쓽 洹 솢꽦룄瑜 넂뿬二쇰뒗 KT 쟻슜뿉 뵲瑜 겕씪슦移 뒪듃 룞옉뿉꽌쓽 COM 씠룞냽룄 뿁뜦愿젅怨 臾대쫷愿젅 媛곷룄 諛 理쒕 媛곸냽룄쓽 李⑥씠瑜 鍮꾧탳遺꾩꽍븿쑝濡쒖뜥, 뒪봽由고꽣쓽 겕씪슦移 뒪듃 닔뻾뒫젰 뼢긽쓣 넻븳 寃쎄린젰 뼢긽쓣 쐞븳 怨쇳븰쟻 洹쇨굅瑜 留덈젴븯怨좎옄 븳떎.

뿰援 諛⑸쾿

1. 뿰援щ긽

븳援泥댁쑁븰援먯뿉 냼냽맂 궓옄 떒嫄곕━ 쑁긽꽑닔 以 쟾援쉶 엯긽 寃쎈젰씠 엳뒗 슦닔 꽑닔瑜 긽쑝濡 痢≪젙 떆옉 3媛쒖썡 씠궡뿉 뿀由ъ 븯吏 넀긽 諛 넻利앹쓣 寃쏀뿕븯吏 븡 7紐(100 m 3紐, 400 m 4紐)쓣 뿰援щ긽옄濡 꽑젙븯怨, 뿰援щ긽옄쓽 씤援ы넻怨꾩쟻 듅꽦 Table 1怨 媛숇떎. 蹂 뿰援 젅李⑤뒗 遺寃쎈븰援먯쓽 깮紐낆쑄由ъ쐞썝쉶濡쒕꽣 듅씤쓣 뼸뿀怨(No. 1041386-202106-HR-29-02), 紐⑤뱺 꽑닔뒗 뿰援ъ쓽 紐⑹쟻怨 젅李⑥뿉 빐 옄꽭븳 꽕紐낆쓣 뱾 썑 옄諛쒖쟻씤 李몄뿬뿉 빐 룞쓽븯떎.

Table 1 . Characteristics of participants

Variable100 m sprinter (n=3)400 m sprinter (n=4)
Age (yr)20.33±0.5720.75±0.50
Height (cm)174.33±4.04180.25±4.50
Weight (kg)69.00±6.0870.50±2.51
Career (yr)4.67±2.086.00±2.16
Personal best (sec)10.75±0.0648.51±0.44
Rear leg in set position
Right2 (66.7)4 (100)
Left1 (33.3)None

Values are presented as mean±standard deviation or frequency (%).



2. 뿰援ъ젅李 諛 諛⑸쾿

紐⑤뱺 떎뿕 1.22 m 꼫鍮꾩 15 m 湲몄씠쓽 깂(tartan)씠 源붾젮엳怨 異⑷꺽쓣 씉닔븷 닔 엳뒗 踰 硫뷀듃(clash mat)媛 꽕移섎맂 떎뿕떎뿉꽌 吏꾪뻾릺뿀怨 떎뿕 쟾 異⑸텇븳 以鍮꾩슫룞쓣 넻빐 뿰援щ긽옄媛 떎뿕떎 솚寃쎌뿉 쟻쓳븷 닔 엳룄濡 븯떎1. 以鍮꾩슫룞씠 醫낅즺맂 썑 10 m 뒪봽由고듃瑜 떆빀怨 룞씪븳 닔以쑝濡 3쉶 닔뻾븯룄濡 援먯쑁븯怨, 媛 10 m 뒪봽由고듃 떆룄 媛 異⑸텇븳 쑕떇쓣 痍⑦븷 닔 엳룄濡 븯떎4. 紐⑤뱺 꽑닔뒗 옄떊쓽 뒪뙆씠겕솕(spiked shoes)瑜 떊怨 떆빀 긽솴怨 룞씪븳 諛⑹떇쑝濡 뒪똿 釉붾줉쓣 議곗젙븯쑝硫, 異쒕컻 떊샇깂(start pistol) 넀堉 냼由щ줈 泥댄븯뿬 젣怨듯븯떎4. 紐⑤뱺 떎뿕 룞씪븳 궇뿉 닔뻾릺뿀떎.

1) 3李⑥썝 쁺긽 遺꾩꽍

뒪똿 釉붾줉쓣 以묒떖쑝濡 쟻쇅꽑 移대찓씪(7竊; Qualisys AB, Göteborg, Sweden) 10 而щ윭 鍮꾨뵒삤 移대찓씪(Oqus 2c; Qualisys AB) 1媛 룷븿맂 Qualisys Motion capture system (Qualisys AB)쓣 諛곗튂븯怨, 移대찓씪濡쒕꽣 쟾넚맂 옄猷뚮뒗 Qualisys Track Manager 2.15 (Qualisys AB)瑜 궗슜븯뿬 닔吏묓븯쑝硫, 끂씠利덈 젣嫄고븯湲 쐞븯뿬 뿭 넻怨 븘꽣(Butterworth low-pass filter)瑜 솢슜븯뿬 李⑤떒 二쇳뙆닔(cut-off frequency)瑜 10 Hz濡 꽕젙븯떎22.

뿰援щ긽옄쓽 궎 紐몃Т寃 痢≪젙쓣 룷븿븳 紐⑤뱺 湲곗큹 議곗궗媛 醫낅즺맂 썑, 룞씪븳 寃궗옄媛 뿰援щ긽옄쓽 二쇱슂愿젅 諛 遺꾩젅뿉 珥 47媛쒖쓽 諛섏궗 留덉빱瑜 遺李⑺븯떎1: 븵履/뮘履 癒몃━ 뼇쁿, 遊됱슦由щ펷(acromion), 鍮쀬옣堉(clavicle), 蹂듭옣堉(sternum), 7踰덉㎏ 紐⑸펷, 1踰덉㎏ 뿀由щ펷, 븞履/媛履 뙏轅됯젅, 븞履/媛履 넀紐⑷젅, 2踰덉㎏/5踰덉㎏ 넀뿀由щ펷 癒몃━(metacarpal heads), 쐞븵/뮘뿁뜦堉덇떆(anterior/ posterior superior iliac spine), 뿁뜦堉덈뒫꽑(iliac crest), 븞履/媛履 臾대쫷愿젅, 븞履/媛履 諛쒕ぉ愿젅, 諛쒓퓞移섎펷(calcaneus), 以묎컙諛 媛履(lateral midfoot), 1踰덉㎏/5踰덉㎏ 諛쒗뿀由щ펷 癒몃━(metatarsal heads), 뾼吏諛쒓씫 癒몃━(head of the first toe).

겕씪슦移 뒪듃 룞옉 異쒕컻떊샇 썑 泥 吏곸엫씠 諛쒖깮븳 떆젏(set position, E1)怨 뮮諛쒖씠 뒪똿 釉붾줉뿉꽌 뼥뼱吏뒗 떆젏(rear block exit, E2), 뮮諛쒖씠 吏硫댁뿉 젒珥됲븯뒗 떆젏(initial contact of rear leg, E3), 뮮諛쒖씠 吏硫댁뿉꽌 뼥뼱吏뒗 떆젏(take-off of rear leg, E4), 븵諛쒖씠 吏硫댁뿉 젒珥됲븯뒗 떆젏(initial contact of front leg, E5) 벑 5媛쒖쓽 씠踰ㅽ듃濡 援щ텇븯怨, 媛 씠踰ㅽ듃瑜 湲곗쑝濡 뼇븯吏 뫖떛 援ш컙(both leg pushing phase, P1)怨 븵諛 뫖떛 援ш컙(front leg pushing phase, P2), 泥 엯媛 援ш컙(stance phase of rear leg, P3), 泥 鍮꾪뻾 援ш컙(first flight phase of front leg, P4) 벑 4媛쒖쓽 援ш컙쓣 젙쓽븯떎(Fig. 1)3. 5媛쒖쓽 씠踰ㅽ듃 떆젏뿉 빐꽌뒗 떆긽硫댁뿉꽌쓽 뿁뜦愿젅怨 臾대쫷愿젅쓽 媛곷룄(°)瑜 솗씤븯怨, 4媛쒖쓽 援ш컙뿉 빐꽌뒗 COM쓽 씠룞냽룄(m/sec) 떆긽硫댁뿉꽌쓽 뿁뜦愿젅 諛 臾대쫷愿젅쓽 理쒕 媛곸냽룄(°/sec)瑜 솗씤븯떎. COM de Leva23媛 젣븞븳 諛⑸쾿쓣 넻빐 빐遺븰쟻 遺꾩젅 옄猷뚮 궗슜븯뿬 궛異쒗븯怨, 뿁뜦愿젅 媛곷룄뒗 泥닿컙怨 꼻쟻떎由(thigh)쓽 궗엲媛곸쑝濡 젙쓽븯쑝硫, 臾대쫷愿젅 媛곷룄뒗 꼻쟻떎由ъ 븘옒떎由(lower leg)쓽 궗엲媛곸쑝濡 젙쓽븯떎.

Fig. 1. Definition of the events and associated phases during the crouching start.

2) 뀒씠븨 湲곕쾿

룞씪븳 寃궗옄媛 紐⑤뱺 뿰援щ긽옄뿉寃 KT 뵆씪떆蹂 뀒씠븨(placebo taping, PT)쓣 쟻슜븯怨, 뀒씠븨쓣 쟻슜븯湲 쟾 븣肄붿삱 넑쑝濡 뀒씠븨 遺李 遺쐞瑜 源⑤걮씠 떐븘二쇱뿀떎24.

KT뒗 3-inch (7.5-cm) beige tape (MSSM; Kino Soft Inc,, Seoul, Korea)瑜 궗슜븯뿬 뼇履 뮘꽇떎由ш렐뿉 쟻슜븯떎. 슦꽑, 뿰援щ긽옄뒗 렪븯寃 꽑 옄꽭뿉꽌 긽泥대 빟媛 븵쑝濡 援щ젮 뿁뜦愿젅씠 援쏀옒 릺룄濡 援먯쑁븯怨, 뿁뜦堉덇떆(ischial tuberosity)遺꽣 삤湲덇퉴吏 湲몄씠쓽 뀒씠봽瑜 Y옄 紐⑥뼇쑝濡 留뚮뱺 썑, 몦遺 以묎컙遺쐞遺꽣 醫낆븘由щ펷癒몃━(fibular head) 젙媛뺣펷(tibia)쓽 븞履쎄젅쑖湲(medial condyle) 諛⑺뼢쑝濡 遺李⑺븯떎25. 뀒씠봽뒗 25% 떊옣젰(tension)쓣 쟻슜븯뿬 뵾遺뿉 二쇰쫫씠 깮湲곗 븡룄濡 쟻슜븯떎(Fig. 2A)26.

Fig. 2. Kinesiology taping (A) and placebo taping (B).

KT 쟻슜뿉 븳 꽑닔쓽 湲곕媛먯쓣 넻븳 뵆씪떆蹂 슚怨쇰 넻젣븯怨좎옄 PT瑜 쟻슜븯떎27. 2-inch (5-cm) beige tape (MSSM)瑜 궗슜븯뿬 뼇븯吏뿉 쟻슜븯怨, 臾대쫷堉 諛붾떏(patellar base)쑝濡쒕꽣 쐞履쎌쑝濡 15 cm 뼥뼱吏 쐞移섏뿉 떊옣젰 뾾씠 쟻슜븯떎(Fig. 2B)28.

3. 옄猷 遺꾩꽍

紐⑤뱺 痢≪젙媛믨낵 궛異쒓컪 IBM SPSS Statistics version 23 for Windows (IBM Corp., Armonk, NY, USA)瑜 씠슜븯뿬 湲곗닠넻怨꾨웾쓣 궛異쒗븯怨, 媛 씠踰ㅽ듃 援ш컙뿉 빐 뀒씠븨 쟻슜 긽깭뿉 뵲瑜 슫룞븰쟻 蹂씤쓽 李⑥씠瑜 솗씤븯湲 쐞빐 봽由щ뱶留 寃젙(Friedman test)쓣 떎떆븯쑝硫, 궗썑寃젙 쐧肄뺤뒯쓽 遺샇닚쐞寃젙(Wilcoxon signed rank test)쓣 궗슜븯떎. 紐⑤뱺 媛꽕쓽 쑀쓽닔以 α=0.05濡 꽕젙븯떎.

寃 怨

1. 뀒씠븨 쟻슜뿉 뵲瑜 떊泥댁쨷떖 씠룞냽룄 李⑥씠

뀒씠븨 쟻슜뿉 뵲瑜 겕씪슦移 뒪듃쓽 援ш컙蹂 COM 씠룞냽룄 李⑥씠瑜 鍮꾧탳遺꾩꽍븳 寃곌낵, 꽭遺醫낅ぉ 愿怨꾩뾾씠 紐⑤뱺 援ш컙뿉꽌 COM 씠룞냽룄뿉 븳 李⑥씠뒗 굹굹吏 븡븯떎(Table 2).

Table 2 . Velocity of the center of mass in the upward and forward direction depending on taping conditions

SprinterDirectionTaping conditionVelocity (m/sec)

P1P2P3P4
100 m (n=3)UpwardNT0.01±0.020.10±0.22−0.01±0.120.01±0.25
KT0.01±0.010.10±0.220.02±0.110.04±0.28
PT0.01±0.020.10±0.230.03±0.120.04±0.31
Z (p)2.000 (0.368)0.667 (0.717)2.000 (0.368)2.000 (0.368)
ForwardNT0.34±0.102.66±0.103.47±0.014.07±0.87
KT0.27±0.182.69±0.053.58±0.084.22±0.06
PT0.38±0.242.67±0.113.52±0.074.16±0.04
Z (p)0.667 (0.717)0.667 (0.717)4.667 (0.097)4.667 (0.097)
400 m (n=4)UpwardNT−0.03±0.090.06±0.12−0.04±0.10−0.18±0.16
KT−0.03±0.060.11±0.14−0.01±0.11−0.10±0.16
PT−0.03±0.070.06±0.15−0.04±0.13−0.20±0.23
Z (p)1.500 (0.472)1.500 (0.472)3.500 (0.174)6.000 (0.050)
ForwardNT0.58±0.522.56±0.143.42±0.223.97±0.24
KT0.48±0.342.57±0.263.41±0.253.93±0.32
PT0.39±0.182.66±0.113.45±0.243.97±0.29
Z (p)0.001 (0.999)3.500 (0.174)0.001 (0.999)0.500 (0.779)

Values are presented as mean±standard deviation unless otherwise specified. Positive value (+) means upward and forward direction.

NT: non-taping, KT: kinesiology taping, PT: placebo taping, P1: from set position to rear block exit, P2: from rear block exit to initial contact of rear leg, P3: from initial contact of rear leg to take-off of rear leg, P4: from take-off of rear leg to initial contact of front leg.



2. 뀒씠븨 쟻슜뿉 뵲瑜 떆긽硫댁뿉꽌쓽 뿁뜦愿젅 媛곷룄 理쒕 媛곸냽룄 李⑥씠

뀒씠븨 쟻슜뿉 뵲瑜 겕씪슦移 뒪듃쓽 씠踰ㅽ듃蹂 뿁뜦愿젅 媛곷룄 李⑥씠瑜 鍮꾧탳遺꾩꽍븳 寃곌낵, 100 m 뒪봽由고꽣뒗 紐⑤뱺 떆젏뿉꽌 븵諛쒓낵 뮘諛쒖쓽 뿁뜦愿젅 媛곷룄 李⑥씠瑜 蹂댁씠吏 븡븯쑝굹 400 m 뒪봽由고꽣뒗 뮘諛쒖쓽 뿁뜦愿젅 媛곷룄留 李⑥씠瑜 蹂댁씠吏 븡븯떎(Table 3). 洹몃윭굹, 400 m 뒪봽由고꽣 븵諛쒖쓽 寃쎌슦, E1 떆젏뿉꽌 KT 쟻슜 썑쓽 뿁뜦愿젅 媛곷룄(106.12°±4.84°)媛 뀒씠븨 쟻슜 쟾(85.07°± 5.29°, p=0.048)怨 PT 쟻슜 썑(81.96°±9.18°, p=0.048)蹂대떎 뜑 겙 寃껋쑝濡 굹굹 뿁뜦愿젅쓽 援쏀옒씠 뜙 릺뼱 엳쓬쓣 솗씤븯怨(Z=6.500, p=0.039), E4 E5 떆젏뿉꽌룄 KT 쟻슜 썑쓽 뿁뜦愿젅 媛곷룄(媛곴컖 105.71°±13.37° 139.58°±4.91°)媛 PT 쟻슜 썑(媛곴컖 94.02°±8.86° 128.56°±6.93°; 媛곴컖 p=0.048怨 p=0.048)蹂대떎 而몄쑝硫 뀒씠븨 쟻슜 쟾(媛곴컖 90.85°±11.71° 122.53°±9.78°; 媛곴컖 p=0.048怨 p=0.048)蹂대떎룄 겙 寃껋쑝濡 솗씤릺뿀떎(媛곴컖 Z=–8.000, p=0.018怨 Z=–8.000, p=0.018).

Table 3 . Hip joint angle of rear and front leg in the sagittal plane depending on taping conditions

SprinterLegTaping conditionAngle (°)

E1E2E3E4E5
100 m (n=3)RearNT112.54±5.49140.15±4.70108.01±6.72178.48±8.88137.83±11.83
KT114.18±5.69141.20±7.46107.25±5.04181.20±9.48148.99±24.87
PT113.24±4.22141.32±6.41109.65±9.24182.03±8.23157.97±21.67
Z (p)2.000 (0.368)0.667 (0.717)0.001 (0.999)2.000 (0.368)0.667 (0.717)
FrontNT81.72±3.12120.04±5.59170.60±7.4089.45±7.67137.44±6.14
KT100.44±7.28107.71±7.28143.91±1.0491.73±7.17118.25±12.18
PT80.81±3.75114.58±14.36168.26±2.9588.08±6.32121.97±14.01
Z (p)6.000 (0.050)2.667 (0.364)4.667 (0.097)4.667 (0.097)4.667 (0.097)
400 m (n=4)RearNT108.90±11.55127.63±12.76102.24±5.62170.53±4.59156.42±10.19
KT108.54±11.23129.05±11.10102.14±4.16171.85±5.95147.49±19.84
PT105.87±10.71130.96±9.70100.73±6.53170.93±3.01157.65±10.68
Z (p)3.500 (0.174)0.500 (0.779)2.000 (0.368)0.001 (0.999)2.000 (0.368)
FrontNT85.07±5.29110.36±11.17167.58±6.8190.85±11.71122.53±9.78
KT106.12±4.84115.37±2.13137.16±9.87105.71±13.37139.58±4.91
PT81.96±9.18113.30±6.98168.71±4.1494.02±8.86128.56±6.93
Z (p)6.500 (0.039)2.000 (0.368)6.000 (0.050)8.000 (0.018)8.000 (0.018)

Values are presented as mean±standard deviation unless otherwise specified.

NT: non-taping, KT: kinesiology taping, PT: placebo taping, E1: set position, E2: rear block exit, E3: initial contact of rear leg, E4: take-off of rear leg, E5: initial contact of front leg.



뀒씠븨 쟻슜뿉 뵲瑜 겕씪슦移 뒪듃쓽 援ш컙蹂 뿁뜦愿젅 理쒕 媛곸냽룄 李⑥씠瑜 鍮꾧탳遺꾩꽍븳 寃곌낵, 100 m 뒪봽由고꽣뒗 紐⑤뱺 떆젏뿉꽌 븵諛쒓낵 뮘諛쒖쓽 뿁뜦愿젅 媛곸냽룄 李⑥씠瑜 蹂댁씠吏 븡븯쑝굹 400 m 뒪봽由고꽣뒗 븵諛쒖쓽 뿁뜦愿젅 媛곸냽룄留 李⑥씠瑜 蹂댁씠吏 븡븯떎(Table 4). 洹몃윭굹, 400 m 뒪봽由고꽣 뮮諛쒖쓽 寃쎌슦, P1 援ш컙뿉꽌 뀒씠븨 쟻슜 쟾쓽 뿁뜦愿젅 媛곸냽룄(–327.27°±36.34°/sec)뒗 KT (–277.56°±25.88°/sec, p=0.048) PT (–196.86°±76.60°/sec, p=0.048) 쟻슜 썑蹂대떎 궙 寃껋쑝濡 솗씤릺뼱, 뀒씠븨 쟻슜 쟾쓽 뿁뜦愿젅뿉꽌 룄 媛곸냽룄媛 뜑 넂 寃껋쑝濡 굹궗떎(Z=–8.000, p=0.018).

Table 4 . Hip joint angular velocity of rear and front leg in the sagittal plane depending on taping conditions

SprinterLegTaping conditionAngular velocity (°/sec)

P1P2P3P4
100 m (n=3)RearNT−282.35±44.85506.21±59.80−491.33±49.46237.44±112.03
KT−331.67±53.02552.92±27.75−495.68±38.23316.79±111.96
PT−231.16±57.82535.98±24.76−493.86±16.96318.05±76.31
Z (p)2.667 (0.264)2.667 (0.264)0.001 (0.999)4.667 (0.097)
FrontNT−293.98±52.96−445.21±13.50631.72±38.88−594.99±249.97
KT−284.59±24.78−451.84±35.31615.01±27.81−601.47±167.76
PT−291.20±57.84−447.09±23.38638.82±17.60−455.06±73.64
Z (p)0.667 (0.717)0.667 (0.717)0.667 (0.717)0.667 (0.717)
400 m (n=4)RearNT−327.27±36.34331.62±128.32−420.07±51.9297.75±151.87
KT−277.56±25.88354.29±138.84−439.77±60.51144.71±116.70
PT−196.86±76.60387.77±113.97−414.61±38.52190.15±113.45
Z (p)8.000 (0.018)1.500 (0.472)1.500 (0.472)4.500 (0.105)
FrontNT−225.29±104.52−433.88±62.92543.94±17.79−356.79±125.42
KT−244.33±102.17−433.70±96.80555.69±30.89−444.63±175.55
PT−271.73±61.36−444.10±55.21551.59±44.82−345.88±133.09
Z (p)3.500 (0.174)2.000 (0.368)0.001 (0.999)2.000 (0.368)

Values are presented as mean±standard deviation unless otherwise specified. Positive values represent angular velocity toward hip flexion.

NT: non-taping, KT: kinesiology taping, PT: placebo taping, P1: from set position to rear block exit, P2: from rear block exit to initial contact of rear leg, P3: from initial contact of rear leg to take-off of rear leg, P4: from take-off of rear leg to initial contact of front leg.



3. 뀒씠븨 쟻슜뿉 뵲瑜 떆긽硫댁뿉꽌쓽 臾대쫷愿젅 媛곷룄 理쒕 媛곸냽룄 李⑥씠

뀒씠븨 쟻슜뿉 뵲瑜 겕씪슦移 뒪듃쓽 씠踰ㅽ듃蹂 臾대쫷愿젅 媛곷룄 李⑥씠瑜 鍮꾧탳遺꾩꽍븳 寃곌낵, 꽭遺醫낅ぉ 愿怨꾩뾾씠 紐⑤뱺 援ш컙뿉꽌 臾대쫷愿젅 媛곷룄뿉 븳 李⑥씠뒗 굹굹吏 븡븯怨(Table 5), 援ш컙蹂 臾대쫷愿젅 理쒕 媛곸냽룄 李⑥씠 삉븳 꽭遺醫낅ぉ 愿怨꾩뾾씠 紐⑤뱺 援ш컙뿉꽌 솗씤릺吏 븡븯떎(Table 6).

Table 5 . Knee joint angle of rear and front leg in the sagittal plane depending on taping conditions

SprinterLegTaping conditionAngle (°)

E1E2E3E4E5
100 m (n=3)RearNT122.70±9.96130.75±9.08108.04±9.59155.45±6.5473.90±24.53
KT123.88±6.91136.30±5.06105.28±6.78151.00±7.4182.84±30.06
PT123.86±10.12139.02±8.64103.43±8.89156.00±3.1298.10±22.68
Z (p)0.667 (0.717)0.667 (0.717)2.000 (0.368)0.667 (0.717)0.667 (0.717)
FrontNT101.44±10.59109.43±2.65142.26±5.4493.75±10.78130.90±13.51
KT100.44±7.28107.71±2.28143.91±1.0491.73±7.17118.25±12.18
PT100.79±9.85110.08±1.93136.73±17.7598.53±6.88119.45±14.65
Z (p)0.667 (0.717)2.667 (0.264)0.667 (0.717)2.000 (0.368)4.667 (0.097)
400 m (n=4)RearNT120.80±10.19129.82±10.98128.72±7.40162.29±4.5697.25±12.57
KT121.39±8.61131.06±12.07126.62±6.60160.51±1.5585.40±16.97
PT114.55±8.06129.99±11.97127.07±7.78158.12±1.40100.01±10.47
Z (p)4.500 (0.105)1.500 (0.472)3.500 (0.174)1.500 (0.472)2.000 (0.368)
FrontNT107.33±3.53114.39±3.36140.53±8.64110.54±16.76139.56±4.21
KT106.12±4.84115.37±2.13137.16±9.87105.71±13.37139.58±4.91
PT103.06±6.97113.67±2.97140.06±8.52108.07±10.76141.57±7.31
Z (p)3.500 (0.174)1.500 (0.472)2.000 (0.368)2.000 (0.368)2.000 (0.368)

Values are presented as mean±standard deviation unless otherwise specified.

NT: non-taping, KT: kinesiology taping, PT: placebo taping, E1: set position, E2: rear block exit, E3: initial contact of rear leg, E4: take-off of rear leg, E5: initial contact of front leg.



Table 6 . Knee joint angular velocity of rear and front leg in the sagittal plane depending on taping conditions

SprinterLegTaping conditionAngular velocity (°/sec)

P1P2P3P4
100 m (n=3)RearNT−296.30±01.33701.33±50.24−463.40±136.03312.89±226.08
KT−235.85±124.42743.24±55.88−494.07±68.25209.85±243.31
PT−274.30±108.32779.61±66.81−524.20±55.49269.43±293.66
Z (p)0.667 (0.717)2.000 (0.368)2.000 (0.368)0.667 (0.717)
FrontNT−149.07±74.76−621.41±74.36710.58±38.96−810.96±262.51
KT−134.91±42.79−627.01±57.93695.52±15.90−878.05±87.10
PT−160.25±68.37−626.32±83.82761.62±60.06−892.32±39.10
Z (p)0.667 (0.717)0.667 (0.717)0.667 (0.717)0.667 (0.717)
400 m (n=4)RearNT−330.92±137.97515.64±74.72−982.54±42.01209.12±90.31
KT−363.20±121.26558.92±108.22−403.13±72.19210.55±456.92
PT−290.21±109.50554.05±118.72−371.62±71.2792.27±492.37
Z (p)0.001 (0.999)1.500 (0.472)0.500 (0.779)1.000 (0.607)
FrontNT−146.11±102.22−654.19±49.64643.06±38.96−667.86±169.36
KT−169.88±91.29−648.50±75.07709.01±101.06−723.45±155.29
PT−175.84±100.73−658.20±66.52664.95±75.27−652.02±184.45
Z (p)0.001 (0.999)0.500 (0.779)1.500 (0.472)1.500 (0.472)

Values are presented as mean±standard deviation unless otherwise specified. Positive values represent angular velocity toward knee flexion.

NT: non-taping, KT: kinesiology taping, PT: placebo taping, P1: from set position to rear block exit, P2: from rear block exit to initial contact of rear leg, P3: from initial contact of rear leg to take-off of rear leg, P4: from take-off of rear leg to initial contact of front leg.


怨 李

蹂 뿰援щ뒗 嫄닿컯븳 20 궓옄 100 m 400 m 떒嫄곕━ 슫룞꽑닔瑜 긽쑝濡 뮘꽇떎由ш렐쓽 KT PT 쟻슜뿉 뵲瑜 겕씪슦移 뒪듃 룞옉뿉꽌쓽 슫룞븰쟻 李⑥씠瑜 넻빐 뀒씠븨쓽 슚怨쇰 솗씤븯怨좎옄 븯떎. 洹 寃곌낵, 꽭遺醫낅ぉ 愿怨꾩뾾씠 COM 씠룞냽룄 臾대쫷愿젅쓽 援쏀옒媛곷룄 諛 理쒕 媛곸냽룄뿉뒗 李⑥씠瑜 蹂댁씠吏 븡븯쑝굹, 400 m 뒪봽由고꽣뒗 異쒕컻떊샇 썑 泥 吏곸엫씠 諛쒖깮븯뒗 떆젏怨 뮮諛쒖씠 吏硫댁뿉꽌 뼥뼱吏뒗 떆젏 諛 븵諛쒖씠 吏硫댁뿉 젒珥됲븯뒗 떆젏뿉꽌 KT 쟻슜 썑 븵諛쒖쓽 뿁뜦愿젅씠 援쏀옒씠 뜙 릺뼱 엳뿀怨, 뼇븯吏 뫖떛 援ш컙뿉꽌 KT PT 쟻슜 썑 뮮諛쒖쓽 뿁뜦愿젅 뀒씠븨 쟻슜 쟾蹂대떎 룄 諛⑺뼢쓽 理쒕 媛곸냽룄媛 뜑 媛먯냼븿쓣 蹂댁떎.

븵꽌 뼵湲됲븳 諛붿 媛숈씠 겕씪슦移 뒪듃 닔뻾뒫젰 100 m 寃쎄린湲곕줉怨 留ㅼ슦 諛젒븳 愿젴꽦씠 엳怨, 씠윭븳 씠쑀濡 뒪듃 룞옉뿉 빐 湲곗닠뿰援(descriptive study) 諛 떎뿕뿰援(experimental study)媛 愿묐쾾쐞븯寃 吏꾪뻾릺뼱 솕떎3. 씠윭븳 꽑뻾뿰援ъ뿉꽌 뒪듃 닔뻾뒫젰쓣 룊媛븯湲 쐞빐 媛옣 씪諛섏쟻쑝濡 궗슜릺뒗 蹂씤 뒪똿 釉붾줉쓣 踰쀬뼱굹뒗 떆젏쓽 COM 씠룞냽룄濡, 씠 냽룄媛 鍮좊쇱닔濡 뫖떛 援ш컙뿉꽌 떊泥댁뿉꽌 諛쒖깮븯뒗 옒(force)씠 겕떎뒗 寃껋쑝濡 빐꽍븷 닔 엳떎3. 뒳濡쒕컮땲븘 援媛몴 냼냽 궓옄 뒪봽由고꽣(100 m 湲곕줉 10.66 sec)쓽 寃쎌슦, 釉붾줉뿉꽌 踰쀬뼱굹뒗 떆젏쓽 COM 씠룞냽룄뒗 3.38 m/sec濡 뒳濡쒕컮땲븘 겢읇 냼냽 뒪봽由고꽣(100 m 湲곕줉 11.00 sec)쓽 냽룄(3.16 m/sec)蹂대떎 鍮좊Ⅸ 寃껋쑝濡 솗씤릺뿀怨29, 援젣쟻 닔以쓽 궓 뒪봽由고꽣(100 m 湲곕줉 媛곴컖 10.03 sec 11.10 sec)쓽 COM 씠룞냽룄뒗 媛곴컖 4.16 m/sec 3.11 m/sec濡 솗씤릺뿀떎5. 蹂 뿰援ъ뿉꽌뒗 뀒씠븨 쟻슜 쟾 100 m 뒪봽由고꽣(湲곕줉 10.75 sec) 400 m 뒪봽由고꽣(湲곕줉 48.51 sec)쓽 泥 엯媛 援ш컙 룞븞 COM 씠룞냽룄뒗 媛곴컖 3.47 m/sec 3.42 m/sec濡 솗씤릺뿀怨, KT 쟻슜 썑 100 m 뒪봽由고꽣 400 m 뒪봽由고꽣쓽 냽룄뒗 媛곴컖 3.58 m/sec 3.41 m/sec濡 솗씤릺뿀떎. 鍮꾩듂븳 100 m 湲곕줉뿉 븳 꽑뻾뿰援щ낫떎 蹂 뿰援ъ뿉꽌쓽 뀒씠븨 쟻슜 쟾썑 COM 씠룞냽룄媛 넂 寃껋쑝濡 깮媛곷릺굹, 씠뒗 釉붾줉뿉꽌 踰쀬뼱굹뒗 떆젏뿉꽌 COM 씠룞냽룄瑜 솗씤븳 꽑뻾뿰援ъ뒗 떖由 蹂 뿰援ъ뿉꽌뒗 泥 엯媛 援ш컙뿉꽌 냽룄瑜 솗씤븳 寃껉낵 愿젴씠 엳뒗 寃껋쑝濡 깮媛곷맂떎. 삉븳 떒嫄곕━ 寃쎄린湲곕줉 뒪듃 닔뻾뒫젰肉 븘땲씪 媛냽援ш컙뿉꽌 겙 닚媛 냽룄瑜 궡뒗 뒫젰怨 諛젒븳 뿰愿꽦씠 엳떎怨 蹂닿퀬릺뿀쑝誘濡3, 異뷀썑 뿰援ъ뿉꽌뒗 뀒씠븨 쟻슜뿉 뵲瑜 媛냽援ш컙뿉꽌쓽 COM 씠룞냽룄 李⑥씠瑜 솗씤븳떎硫 뜑 쑀쓽誘명븳 젙蹂대 젣怨듯븷 닔 엳쓣 寃껋쑝濡 깮媛곷맂떎.

1982뀈 Atwater30쓽 뿰援щ 떆옉쑝濡 뒪봽由고듃 寃쎄린湲곕줉쓣 뼢긽븯湲 쐞빐 以鍮꾩옄꽭(set position)뿉꽌 媛옣 씠긽쟻씤 떊泥대텇젅쓽 쐞移섎 솗씤븯怨좎옄 븯쑝굹, 뒪봽由고꽣쓽 떊泥댁쟻 듅꽦뿉 뵲씪 以鍮꾩옄꽭 삉븳 떖씪吏誘濡 理쒖쟻쓽 以鍮꾩옄꽭뿉 븳 젙蹂대 젣怨듯븯뒗 뜲뿉뒗 뼱젮씠 엳떎. 洹몃윭굹, 씪諛섏쟻쑝濡 뿁뜦愿젅 뼱源④젅蹂대떎 넂씠 쐞移섑븯怨 뼱源④젅 異쒕컻꽑蹂대떎뒗 븵履쎌뿉 쐞移섑빐빞 븯硫, 븵諛쒓낵 뮮諛쒖쓽 臾대쫷 媛곴컖 90°–110° 120°–135° 젙룄쓽 媛곷룄瑜 쑀吏븯뿬 泥댁쨷씠 븵履 諛쒖뿉 쐞移섑븯룄濡 빐빞 븳떎怨 꽕紐낅릺怨 엳떎31. 濡쒕쭏뿉꽌 뿴由 援젣쑁긽寃쎄린뿰留(International Amateur Athletic Federation) 떎씠紐щ뱶 由ш렇 쑁긽寃쎄린 쉶쓽 寃곗듅쟾뿉 異쒖쟾븳 궓옄 뒪봽由고꽣(100 m 湲곕줉 10.03 sec)쓽 뒪듃 룞옉쓣 遺꾩꽍븳 뿰援5뿉꽌뒗 떆옉 옄꽭뿉꽌 븵履쎄낵 뮘履 臾대쫷愿젅 媛곴컖 91.0° 120.7°, 븵履쎄낵 뮘履 뿁뜦愿젅 媛곴컖 37.6° 71.2°씤 諛섎㈃ 씠깉由ъ븘 꽑닔沅 쉶 寃곗듅쟾뿉 異쒖쟾븳 궓옄 뒪봽由고꽣쓽 떆옉 옄꽭뿉꽌 븵履쎄낵 뮘履 臾대쫷愿젅 媛곴컖 93.0° 116.1°, 븵履쎄낵 뮘履 뿁뜦愿젅 44.9° 62.6°濡 솗씤릺뼱, 寃쎄린젰씠 슦닔븳 꽑닔쓽 以鍮꾩옄꽭뒗 뮮諛 臾대쫷愿젅쓽 룄씠 利앷릺怨 븵諛 뿁뜦愿젅쓽 援쏀옒씠 媛먯냼릺誘濡 뿁뜦愿젅쓽 쐞移섍 뜑 넂怨 泥댁쨷씠 뜑 븵履쎌쑝濡 쐞移섑븷 닔 엳뒗 옄꽭瑜 痍⑦븯뒗 寃껋쑝濡 깮媛곷맂떎. 蹂 뿰援ъ뿉꽌뒗 뮘꽇떎由ш렐 뀒씠븨 쟻슜뿉 뵲瑜 븵履쎄낵 뮘履 臾대쫷愿젅怨 뮘履 뿁뜦愿젅쓽 媛곷룄뿉뒗 李⑥씠瑜 蹂댁씠吏 븡븯쑝굹, 븵履 뿁뜦愿젅 뀒씠븨 쟻슜 쟾(85.07°)怨 PT 쟻슜 썑(81.96°)蹂대떎 KT 쟻슜 썑(106.12°)쓽 媛곷룄媛 뜑 利앷븯뿬 뿁뜦愿젅쓽 援쏀옒씠 삤엳젮 媛먯냼븯뒗 寃껋쑝濡 솗씤릺뿀怨, 뮮諛쒖씠 吏硫댁뿉꽌 뼥뼱吏뒗 떆젏怨 븵諛쒖씠 吏硫댁뿉 젒珥됲븯뒗 떆젏뿉꽌룄 뿁뜦愿젅 援쏀옒씠 媛먯냼븯뒗 寃껋씠 솗씤릺뿀떎. 씠윭븳 寃곌낵뒗 뿁뜦愿젅怨 臾대쫷愿젅쓽 吏곸엫뿉 紐⑤몢 愿뿬븯뿬 긽쟻쑝濡 겙 떊옣꽦(extensibility)씠 슂援щ릺뒗 뮘꽇떎由ш렐뿉 25% 젙룄쓽 떊옣젰쓣 궗슜븯뿬 KT瑜 쟻슜븳 寃껉낵 愿젴씠 엳뒗 寃껋쑝濡 깮媛곷릺怨, 씠윭븳 떊옣젰 愿젅쓽 吏곸엫 젣븳쓣 쑀룄뻽쓣 寃껋쑝濡 뙋떒맂떎. 洹몃윭굹 젅겕由ъ뿉씠뀡 뒪룷痢좎뿉 李몄뿬븯뒗 20 嫄닿컯븳 꽦씤쓽 뮘꽇떎由ш렐뿉 KT瑜 쟻슜븯뿬 洹 슚怨쇰 솗씤븳 뿰援26뿉꽌 뀒씠븨 쟻슜 30遺 諛 3씪 썑뿉 뮘꽇떎由ш렐쓽 떊옣꽦씠 利앷릺뿀떎怨 蹂닿퀬븯怨, 씠뒗 KT媛 뵾遺쓽 湲곌퀎닔슜湲곕 옣떆媛 옄洹뱁븿쑝濡쒖뜥 쓳젰 셿솕(stress relaxation) 쁽긽씠 諛쒖깮븳 寃껋씪 닔 엳떎怨 꽕紐낇븯떎.

愿젅쓽 媛곸냽룄(angular velocity)뒗 蹂댄뻾 삉뒗 뒪룷痢 솢룞 以 媛 愿젅씠 뼹留덈굹 鍮좊Ⅴ寃 吏곸씠뒗吏瑜 솗씤븯뒗 諛⑸쾿 以 븯굹濡32, 愿젴 愿젅쓽 媛곸냽룄 愿젅 紐⑤찘듃(moment)瑜 怨깊븯뿬 愿젅뿉꽌 諛쒖깮븯뒗 옒(power)쓣 궛異쒗븷 닔 엳떎8. 씠뒗 愿젅 紐⑤찘듃媛 씪젙븳 寃쎌슦뿉뒗 媛곸냽룄 愿젅뿉꽌 諛쒖깮븯뒗 옒 젙쟻 긽愿愿怨꾨 蹂댁씤떎怨 빐꽍븷 닔 엳怨, 蹂댄뻾냽룄媛 利앷븿뿉 뵲씪 愿젅쓽 理쒕 媛곸냽룄 삉븳 利앷븯誘濡32 愿젅뿉꽌 諛쒖깮븯뒗 옒 삉븳 利앷븳떎怨 빐꽍븷 닔 엳떎. 誘멸뎅 븰 뒪봽由고꽣瑜 긽쑝濡 釉붾줉뿉꽌 踰쀬뼱굹뒗 룞븞 寃쎄린젰뿉 뵲瑜 깮泥댁뿭븰쟻 李⑥씠瑜 솗씤븳 뿰援31뿉꽌뒗 슦닔 뒪봽由고꽣쓽 뿁뜦愿젅怨 臾대쫷愿젅 룄뿉 븳 媛곸냽룄(媛곴컖 307.6°/sec 416.2°/sec)媛 鍮꾩슦닔 뒪봽由고꽣(媛곴컖 133.1°/sec 148.5°/sec)蹂대떎 넂 寃껋쑝濡 굹궗怨, 踰④린뿉 슦닔 꽦씤 뒪봽由고꽣(100 m 湲곕줉 10.65 sec) 18꽭 씠븯 뒪봽由고꽣(100 m 湲곕줉 11.21 sec) 諛 16꽭 씠븯 뒪봽由고꽣(100 m 湲곕줉 11.56 sec)瑜 긽쑝濡 釉붾줉뿉꽌 踰쀬뼱굹뒗 떆젏遺꽣 븵諛쒖씠 吏硫 젒珥됲븯뒗 떆젏源뚯 愿젅뿉꽌 諛쒖깮븯뒗 옒쓽 李⑥씠瑜 鍮꾧탳遺꾩꽍븳 寃곌낵, 꽦씤 뒪봽由고꽣媛 泥 엯媛 援ш컙 룞븞 뮮諛쒖쓽 臾대쫷愿젅뿉꽌 뜑 겙 옒씠 諛쒖깮븯뒗 寃껋쑝濡 솗씤릺뿀떎8. 蹂 뿰援ъ뿉꽌뒗 뮘꽇떎由ш렐 뀒씠븨 쟻슜 뿬遺뿉 뵲瑜 븵諛쒓낵 뮮諛 臾대쫷愿젅怨 뮮諛 뿁뜦愿젅쓽 媛곸냽룄 李⑥씠뒗 솗씤릺吏 븡븯怨, 븵諛쒖쓽 뿁뜦愿젅뿉꽌뒗 뼇븯吏 뫖떛援ш컙 룞븞 KT (–277.56°/sec) PT (–196.86°/sec) 쟻슜씠 뀒씠븨 쟻슜 쟾(–327.27°/sec)蹂대떎 룄 諛⑺뼢쑝濡 媛곸냽룄瑜 삤엳젮 媛먯냼떆耳곗쓬쓣 솗씤븷 닔 엳뿀떎. 鍮꾩슫룞꽑닔瑜 긽쑝濡 뮘꽇떎由ш렐쓽 KT 쟻슜 떆媛꾩뿉 뵲瑜 벑泥숈꽦 洹쇰젰 李⑥씠瑜 솗씤븳 뿰援25뿉꽌뒗 뀒씠븨 쟻슜 吏곹썑蹂대떎 48떆媛 씠썑뿉 벑泥숈꽦 洹쇰젰씠 뜑 利앷븳 寃껋쓣 蹂닿퀬븯怨, 씠윭븳 寃곌낵뒗 븳 怨좎같뿰援33뿉꽌 뀒씠봽뿉 쓽빐 젣怨듬릺뒗 뵾遺 옄洹뱀 2삎 湲곌퀎닔슜湲곕 옄洹뱁븯怨 씠寃껋씠 슫룞떒쐞(motor unit)쓣 룞썝븿쑝濡쒖뜥 洹쇰젰씠 利앷븷 닔룄 엳떎뒗 二쇱옣怨 愿젴씠 엳쓣 寃껋쑝濡 깮媛곷맂떎. 異뷀썑 뿰援ъ뿉꽌뒗 뒪룷痢 솢룞쓣 湲곕컲쑝濡 븳 蹂 뿰援щ갑踰뺤쓣 諛뷀깢쑝濡 뀒씠븨 쟻슜 떆媛꾩쓣 怨좊젮븯뿬 洹 슚怨쇰 寃利앺븷 븘슂媛 엳쓣 寃껋쑝濡 깮媛곷맂떎.

1970뀈 Kenzo Kase뿉 쓽빐 媛쒕컻맂 KT뒗 1988뀈 꽌슱삱由쇳뵿쉶瑜 떆젏쑝濡 뒪룷痢 쁽옣뿉꽌 洹쇨낏寃⑷퀎 移섎즺 諛 옱솢, 遺긽삁諛 諛 寃쎄린젰 뼢긽 벑쓽 떎뼇븳 紐⑹쟻쑝濡 꼸由 궗슜릺湲 떆옉븯怨, KT쓽 슚怨쇰 寃利앺븯湲 쐞븳 떎뼇븳 뿰援ш 닔뻾릺뼱 솕쑝굹 洹 슚怨쇱뿉 빐꽌뒗 吏냽쟻쑝濡 끉웳씠 릺怨 엳떎33. 쟻슜 紐⑹쟻怨 遺쐞뿉 뵲씪 뀒씠븨쓣 쟻슜븯뒗 湲곕쾿씠 떎뼇븯怨, 듅엳 슫룞닔뻾뒫젰뿉 븳 뀒씠븨 슚怨쇰 寃利앺븯湲 쐞빐 벑泥숈꽦/벑냽꽦 洹쇰젰쓣 솗씤븯嫄곕굹 젏봽 뒫젰 삉뒗 洹좏삎뒫젰쓣 솗씤븯뒗 벑 뒪룷痢 醫낅ぉ쓽 듅꽦쓣 怨좊젮븯吏 븡 룊媛諛⑸쾿쓣 궗슜븯떎16. 洹몃윭굹 蹂 뿰援ъ뿉꽌뒗 뿕由ы듃 떒嫄곕━ 쑁긽꽑닔瑜 긽쑝濡 꽑뻾뿰援щ 넗濡 뮘꽇떎由ш렐 솢꽦룄瑜 뼢긽떆궎湲 쐞븳 KT瑜 쟻슜븯뿬 寃쎄린湲곕줉怨 愿젴씠 넂 寃껋쑝濡 蹂닿퀬맂 뒪듃 룞옉뿉꽌쓽 슫룞븰쟻 吏곸엫 遺꾩꽍쓣 넻빐 뀒씠븨쓽 슚怨쇰 寃利앺븿쑝濡쒖뜥 洹쇨굅湲곕컲쓽 뀒씠븨 湲곕쾿쓣 궗슜븯뿬 醫낅ぉ쓽 듅꽦쓣 怨좊젮븯뿬 룊媛븯怨좎옄 븯떎. 洹몃윭굹 떎由ш만씠 벑 뒪듃 룞옉뿉 쁺뼢쓣 誘몄튌 닔 엳뒗 떊泥댁쟻 듅꽦3쓣 怨좊젮븯吏 紐삵븯怨, 떒嫄곕━ 寃쎄린 湲곕줉怨 愿젴꽦씠 넂怨 뮘꽇떎由ш렐쓽 솢룞꽦씠 넂 媛냽援ш컙뿉꽌쓽 蹂댄룺(step length), 蹂댁냽(step frequency), 吏硫 吏吏 떆媛(support time), 鍮꾪뻾 떆媛 벑뿉 븳 遺꾩꽍 떆뻾븯吏 紐삵븯떎4,7. 삉븳, 뿰援щ긽쓣 뿕由ы듃 떒嫄곕━ 쑁긽꽑닔濡 븳젙븯뿬 寃쎄린젰 닔以씠 뿰援ш껐怨쇱뿉 쁺뼢쓣 誘몄튂뒗 寃껋쓣 理쒖냼솕븯怨좎옄 븯쑝굹, 몴蹂몄닔媛 쟻뼱 씠瑜 떒嫄곕━ 쑁긽꽑닔뿉寃 씪諛섑솕븯湲곗뿉뒗 뼱젮씠 엳쓣 寃껋쑝濡 깮媛곷맂떎. 異뷀썑 뿰援ъ뿉꽌뒗 넻怨꾩쟻씤 쑀쓽꽦쓣 뼸湲 쐞븳 몴蹂몄닔瑜 솗씤븯怨, 뀒씠븨 쟻슜 떆媛꾩쓣 怨좊젮븯뿬 媛냽援ш컙뿉꽌쓽 듅꽦쓣 鍮꾧탳遺꾩꽍븳떎硫 KT 슚怨쇱뿉 븳 쁽옣꽦 넂 뿰援ш껐怨쇰 룄異쒗븷 닔 엳쓣 寃껋씠떎.

寃곕줎쑝濡, 떒嫄곕━ 슫룞꽑닔쓽 뮘꽇떎由ш렐 솢꽦룄瑜 뼢긽떆궎湲 쐞븳 뀒씠븨 쟻슜 COM쓽 씠룞냽룄 뿁뜦愿젅怨 臾대쫷愿젅쓽 吏곸엫 諛 媛곸냽룄쓽 蹂솕瑜 솗씤븯吏 紐삵븯쑝誘濡 겕씪슦移 뒪듃 닔뻾뒫젰쓣 뼢긽븿뿉 엳뼱 湲띿젙쟻씤 슚怨쇰 蹂댁씠吏 븡뒗 寃껋쑝濡 뙋떒맂떎. 異뷀썑 뿰援ъ뿉꽌뒗 떒嫄곕━ 寃쎄린湲곕줉뿉 쁺뼢쓣 誘몄튂뒗 떎뼇븳 蹂씤쓣 怨좊젮븯뿬 뀒씠븨 슚怨쇰 솗씤븷 븘슂媛 엳쓣 寃껋씠떎.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References
  1. Sandamas P, Gutierrez-Farewik EM, Arndt A. The effect of a reduced first step width on starting block and first stance power and impulses during an athletic sprint start. J Sports Sci 2019;37:1046-54.
    Pubmed CrossRef
  2. Pavlovic R. Differences in time of start reaction and achieved result in the sprint disciplines in the finals of the Olympic Games in London and the World Championship in Moscow. Sport Sci Pract Asp 2015;12:25-36.
  3. Bezodis NE, Willwacher S, Salo AIT. The biomechanics of the track and field sprint start: a narrative review. Sports Med 2019;49:1345-64.
    Pubmed KoreaMed CrossRef
  4. Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. From block clearance to sprint running: characteristics underlying an effective transition. J Sports Sci 2013;31:137-49.
    Pubmed CrossRef
  5. Ciacci S, Merni F, Bartolomei S, Di Michele R. Sprint start kinematics during competition in elite and world-class male and female sprinters. J Sports Sci 2017;35:1270-8.
    Pubmed CrossRef
  6. Mero A, Luhtanen P, Komi PV. A biomechanical study of the sprint start. Scandinavian J Sports Sci 1983;5:20-8.
  7. Slawinski J, Bonnefoy A, Leveque JM, et al. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res 2010;24:896-905.
    Pubmed CrossRef
  8. Debaere S, Vanwanseele B, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study. Sports Biomech 2017;16:452-62.
    Pubmed CrossRef
  9. Colyer SL, Nagahara R, Salo AI. Kinetic demands of sprinting shift across the acceleration phase: novel analysis of entire force waveforms. Scand J Med Sci Sports 2018;28:1784-92.
    Pubmed CrossRef
  10. Prince C, Morin JB, Mendiguchia J, et al. Sprint specificity of isolated hamstring-strengthening exercises in terms of muscle activity and force production. Front Sports Act Living 2021;2:609636.
    Pubmed KoreaMed CrossRef
  11. Miyake Y, Suga T, Otsuka M, et al. The knee extensor moment arm is associated with performance in male sprinters. Eur J Appl Physiol 2017;117:533-9.
    Pubmed CrossRef
  12. Nuell S, Illera-Dominguez V, Carmona G, et al. Sex differences in thigh muscle volumes, sprint performance and mechanical properties in national-level sprinters. PLoS One 2019;14:e0224862.
    Pubmed KoreaMed CrossRef
  13. Nuell S, Illera-Dominguez V, Carmona G, et al. Hamstring muscle volume as an indicator of sprint performance. J Strength Cond Res 2021;35:902-9.
    Pubmed CrossRef
  14. Morin JB, Gimenez P, Edouard P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol 2015;6:404.
    Pubmed KoreaMed CrossRef
  15. Song CY, Huang HY, Chen SC, Lin JJ, Chang AH. Effects of femoral rotational taping on pain, lower extremity kinematics, and muscle activation in female patients with patellofemoral pain. J Sci Med Sport 2015;18:388-93.
    Pubmed CrossRef
  16. Lau KK, Cheng KC. Effectiveness of taping on functional performance in elite athletes: a systematic review. J Biomech 2019;90:16-23.
    Pubmed CrossRef
  17. Kase K, Wallis J, Kase T. Clinical therapeutic applications of the Kinesio taping method. 2nd ed. Albuquerque (NM), 2003.
  18. Gomez-Soriano J, Abian-Vicen J, Aparicio-Garcia C, et al. The effects of Kinesio taping on muscle tone in healthy subjects: a double-blind, placebo-controlled crossover trial. Man Ther 2014;19:131-6.
    Pubmed CrossRef
  19. Mak DN, Au IP, Chan M, et al. Placebo effect of facilitatory Kinesio tape on muscle activity and muscle strength. Physiother Theory Pract 2019;35:157-62.
    Pubmed CrossRef
  20. Lins CA, Neto FL, Amorim AB, Macedo Lde B, Brasileiro JS. Kinesio Taping(R) does not alter neuromuscular performance of femoral quadriceps or lower limb function in healthy subjects: randomized, blind, controlled, clinical trial. Man Ther 2013;18:41-5.
    Pubmed CrossRef
  21. Hsu YH, Chen WY, Lin HC, Wang WT, Shih YF. The effects of taping on scapular kinematics and muscle performance in baseball players with shoulder impingement syndrome. J Electromyogr Kinesiol 2009;19:1092-9.
    Pubmed CrossRef
  22. Robertson DG, Dowling JJ. Design and responses of Butterworth and critically damped digital filters. J Electromyogr Kinesiol 2003;13:569-73.
    Pubmed CrossRef
  23. de Leva P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J Biomech 1996;29:1223-30.
    Pubmed CrossRef
  24. Someeh M, Norasteh AA, Daneshmandi H, Asadi A. Immediate effects of Mulligan's fibular repositioning taping on postural control in athletes with and without chronic ankle instability. Phys Ther Sport 2015;16:135-9.
    Pubmed CrossRef
  25. Lumbroso D, Ziv E, Vered E, Kalichman L. The effect of Kinesio tape application on hamstring and gastrocnemius muscles in healthy young adults. J Bodyw Mov Ther 2014;18:130-8.
    Pubmed CrossRef
  26. Farquharson C, Greig M. Temporal efficacy of kinesiology tape vs. Traditional stretching methods on hamstring extensibility. Int J Sports Phys Ther 2015;10:45-51.
    Pubmed KoreaMed
  27. Simmonds MJ. Pain and the placebo in physiotherapy: a benevolent lie? Physiotherapy 2000;86:631-7.
    CrossRef
  28. Kim TG, Kim EK, Park JC. Immediate effects of sports taping applied on the lead knee of low- and high-handicapped golfers during golf swing. J Strength Cond Res 2017;31:981-9.
    Pubmed CrossRef
  29. Coh M, Peharec S, Bacic P, Mackala K. Biomechanical differences in the sprint start between faster and slower high-level sprinters. J Hum Kinet 2017;56:29-38.
    Pubmed KoreaMed CrossRef
  30. Atwater AE. Kinematic analyses of sprinting. Track Field Q Rev 1982;82:12-6.
  31. Lee M, Chan M, Otsuka M, Boey D. The effect of visual gaze location on block-start biomechanics in athletics. ISBS Proceed Arch 2020;38:508.
  32. Mentiplay BF, Banky M, Clark RA, Kahn MB, Williams G. Lower limb angular velocity during walking at various speeds. Gait Posture 2018;65:190-6.
    Pubmed CrossRef
  33. Csapo R, Alegre LM. Effects of Kinesio(R) taping on skeletal muscle strength: a meta-analysis of current evidence. J Sci Med Sport 2015;18:450-6.
    Pubmed CrossRef