search for



Static and Dynamic Postural Control Strategies in Lateral Ankle Sprain Copers: A Perspective on Center of Pressure
Korean J Sports Med 2022;40:110-119
Published online June 1, 2022;  https://doi.org/10.5763/kjsm.2022.40.2.110
© 2022 The Korean Society of Sports Medicine.

Hyung Gyu Jeon1,2, Inje Lee1,2,*, Sae Yong Lee1,2,3

1Department of Physical Education, Yonsei University, Seoul,
2International Olympic Committee Research Centre Korea, Seoul,
3Institute of Convergence Science, Yonsei University, Seoul, Korea
Correspondence to: Sae Yong Lee
Department of Physical Education, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Tel: +82-2-2123-6189, Fax: +82-2-2123-8375, E-mail: sylee1@yonsei.ac.kr
*Current affiliation: Department of Sports Rehabilitation Medicine, Kyungil University, Gyeongsan, Korea.
Received January 10, 2022; Revised March 10, 2022; Accepted April 12, 2022.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Purpose: Although postural control assessment in patients with chronic ankle instability (CAI) has been thoroughly examined in the literature, few researchers have studied balance strategy in lateral ankle sprain (LAS) copers, who recover from LAS injury with no symptom progression. The purpose of this study was to investigate the difference in center of pressure (COP) variables during static and dynamic posture control among LAS copers, patients with CAI, and ankle healthy controls.
Methods: This case-control study recruited 20 patients with CAI, 20 LAS copers, and 20 controls. All participants filled out Ankle Instability Instrument and Foot and Ankle Ability Measure questionnaire and performed single-leg static postural control and Star Excursion Balance Test (SEBT).
Results: LAS copers showed less mediolateral COP range as compared to patients with CAI (p=0.001) and control (p=0.001) during static postural control. Furthermore, LAS copers have less anteroposterior COP standard deviation (SD) (p=0.034), range (p=0.009), velocity (p=0.013) than patients with CAI. Relative to patients with CAI, LAS copers had small mediolateral COP SD (p=0.022) and range (p=0.018) during the posteromedial direction of the SEBT. However, there was no significant difference in both mediolateral and anteroposterior COP variables during anterior and posterolateral directions of the SEBT (p≥ 0.05).
Conclusion: Based on these observed results, the authors conclude that greater postural control in LAS copers is one of the movement strategies to prevent recurrent LAS as a defense mechanism.
Keywords : Chronic ankle instability, Postural balance, Proprioception, Ankle injury, Dynamic balance
꽌 濡

쇅痢 諛쒕ぉ 뿼醫(lateral ankle sprain, LAS)뒗 湲됱옉뒪윭슫 諛쒕ぉ 愿젅쓽 븞履쎈쾲吏(inversion)쑝濡 씤빐 넻利, 遺醫, 鍮꾩젙긽쟻 蹂댄뻾쓣 寃쏀뿕븯뒗 遺긽쑝濡 젙쓽맂떎1. 삉븳, LAS뒗 븵紐⑸쭚씤(쟾嫄곕퉬씤, anterior talofibular ligament), 諛쒓퓞移섏쥌븘由ъ씤(醫낅퉬씤, calcaneofibular ligament), 醫낆븘由ш렐(鍮꾧낏洹, peroneal) 옒以꾨퓧留 븘땲씪 二쇰 떊寃 議곗쭅源뚯 넀긽떆궡쑝濡쒖뜥 옱遺긽瑜좎씠 넂 遺긽씠떎2. 諛섎났릺뒗 LAS뒗 諛쒕ぉ 愿젅쓽 援ъ“쟻 諛 湲곕뒫쟻 寃곗넀쓣 珥덈옒븯뿬 遺덉븞젙꽦怨 넻利앹씠 吏냽릺뒗 留뚯꽦 諛쒕ぉ 遺덉븞젙꽦(chronic ankle instability, CAI)쑝濡 븙솕맆 닔 엳쑝硫3, 愿젅쓽 눜뻾꽦 蹂솕瑜 媛냽솕븯뿬 쇅긽 썑 怨④젅뿼(posttraumatic osteoarthritis) 諛쒕퀝쑝濡 媛쒖씤쓽 궣쓽 吏덉쓣 븙솕떆궎寃 맂떎4.

쇅痢 諛쒕ぉ 뿼醫 肄뷀띁(LAS coper)뒗 LAS瑜 寃쏀뿕뻽쓬뿉룄 遺덇뎄븯怨 諛쒕ぉ 옱遺긽쓣 寃れ 븡뒗 吏묐떒쑝濡 젙쓽릺뒗뜲5, 씠뱾 CAI 솚옄뒗 떎瑜닿쾶 遺긽쓽 옍뿬 利앹긽씠 뾾뼱 媛뺣룄 넂 슫룞 李몄뿬媛 媛뒫븯떎6. 洹몃윭誘濡 肄뷀띁媛 솢슜븯뒗 吏곸엫 쟾왂쓣 遺꾩꽍븯뒗 뿰援щ뒗 몢 媛吏 痢〓㈃뿉꽌 븘슂븯떎怨 븷 닔 엳떎. 泥レ㎏, 湲됱꽦 諛쒕ぉ 뿼醫 씠썑 吏곸엫 쟾왂씠 蹂솕맂 솚옄뱾쓣 궗쟾뿉 솗씤븯뿬 CAI濡 븙솕릺뒗 寃껋쓣 삁諛⑺븷 닔 엳쓣 寃껋씠떎. 몮吏, CAI 솚옄뱾쓽 뒪룷痢 蹂듦瑜 쐞븳 옱솢뿉 븘슂븳 쟾왂쓣 닔由쏀븯뒗 뜲 룄쓣 以 寃껋씠떎. 利, 肄뷀띁뿉 愿븳 뿰援щ뒗 諛쒕ぉ 遺덉븞젙꽦쓽 留뚯꽦솕瑜 諛⑹븯뒗 쟾왂쓣 솗씤븯怨, CAI 솚옄媛 異붽뎄빐빞 븯뒗 紐⑺몴移섎 젣떆븯湲 쐞빐 닔뻾븷 븘슂媛 엳떎.

LAS뒗 諛쒕ぉ 二쇰쓽 怨좎쑀닔슜꽦 媛먭컖(proprioception)쓣 넀긽떆궎怨 洹쇱떊寃 議곗젅(neuromuscular control) 뒫젰쓽 寃곗넀쓣 씪쑝耳 吏냽쟻씤 LAS 諛쒖깮쓽 媛뒫꽦쓣 利앷떆궎뒗뜲3, 씠윭븳 利앹긽 理쒕 2뀈源뚯 吏냽맂떎怨 蹂닿퀬맂떎7. 삉븳, 湲됱꽦 LAS 썑 CAI濡 븙솕맂 솚옄뒗 愿젅 쐞移 媛먭컖(joint position sense)怨 슫룞媛먭컖(kinesthesia)쓽 븯瑜 룷븿븳 떎뼇븳 湲곕뒫쟻 寃곗넀쑝濡 씤빐 吏곸엫씠 蹂솕맂떎8,9. 씠뒗 諛섎濡 肄뷀띁뒗 諛쒕ぉ 愿젅쓽 넀긽맂 媛먭컖슫룞 湲곌(sensorimotor system)쓣 蹂댁긽븯湲 쐞빐 紐몄そ(proximal) 愿젅쓣 솢슜븯뿬 LAS 蹂묐젰씠 뾾뒗 議곌뎔(healthy control group)怨 쑀궗븳 吏곸엫 쟾왂쓣 솢슜븯뒗뜲9, 씠윭븳 젏쓣 誘몃(뼱 蹂댁븘 肄뷀띁뒗 媛먭컖슫룞 湲곌쓽 셿쟾븳 쉶蹂 뿬遺 긽愿뾾씠 吏곸엫 湲곕뒫쓣 젙긽쟻쑝濡 쉶蹂듯븯쓬쓣 삁긽븷 닔 엳떎. 듅엳, 肄뷀띁媛 솢슜븯뒗 吏곸엫 쟾왂 以 씠留덈㈃(frontal plane)怨 떆긽硫(sagittal plane)뿉꽌 떊泥 쓷뱾由쇱쓣 옒 젣뼱븯뒗 옄꽭 議곗젅(postural control) 뒫젰쓣 媛뽰텣 젏 二쇰ぉ븷 留뚰븳 뿰援 寃곌낵씠떎10. 洹몃윭誘濡 CAI 솚옄뱾쓽 寃쎌슦 留뚯꽦 遺긽쑝濡 씤븳 옍뿬 利앹긽쓣 궓湲곗 븡怨 肄뷀띁 媛숈씠 슫룞쑝濡 蹂듦븯湲 쐞빐꽌뒗 媛먭컖湲곌쓽 寃곗넀쓣 쉶蹂듯븯뒗 寃껊퓧留 븘땲씪 젙긽쟻씤 吏곸엫 쟾왂쓣 솗蹂댄븯뒗 寃껋씠 以묒슂븯떎怨 븷 닔 엳떎.

옄꽭 議곗젅 떆媛, 쟾젙湲곌(vestibular organ), 泥댁꽦媛먭컖(somatosensory)쓣 룷븿븳 媛먭컖湲곌쓽 젙蹂댁 슫룞湲곌쓽 긽샇옉슜 寃곌낵臾쇰줈 굹굹뒗 넻빀쟻 吏곸엫쓣 넻빐 룊媛븳떎11. 뵲씪꽌 옄꽭 議곗젅怨 愿젴맂 蹂씤 愿젅 븞젙꽦怨 異⑸텇븳 洹쇰젰쓣 슂援ы븯怨 떊泥 吏덈웾 以묒떖 쐞移섏쓽 쓷뱾由쇱쓣 理쒖냼솕븳떎뒗 愿젏뿉꽌 LAS쓽 諛쒖깮怨 諛젒븳 愿젴씠 엳뒗 泥대젰 슂씤씠씪怨 븷 닔 엳떎12. 옄꽭 議곗젅 젙빐吏 湲곗硫(base of support) 궡뿉꽌 理쒖냼븳쓽 吏곸엫쑝濡 떊泥댁쓽 쁽 긽깭瑜 쑀吏븯뒗 젙쟻 옄꽭 議곗젅怨, 二쇱뼱吏 怨쇱젣瑜 닔뻾븯硫 떊泥 臾닿쾶 以묒떖쓽 룊삎쓣 쑀吏븯뒗 룞쟻 옄꽭 議곗젅 몢 媛吏 삎깭濡 뿰援щ맂떎10,13. 븬젰 以묒떖젏(center of pressure, COP) 諛쒖씠 吏硫댁뿉 떯븘 쇅쟻 넗겕瑜 諛쒖깮떆궎뒗 吏硫대컲젰(ground reaction force)쓽 옉슜젏쑝濡 옄꽭 議곗젅 寃궗 떆 二쇱슂븯寃 愿李고빐빞 븷 蹂씤 以 븯굹씠떎. 寃곌낵쟻쑝濡 諛쒖뿉꽌 굹굹뒗 吏곸엫 COP쓽 遺븯 쐞移섏뿉 뵲씪꽌 떖씪吏 닔 엳湲 븣臾몄뿉14, COP뒗 諛쒖씠 吏硫닿낵 젒珥됲븯뒗 泥댁쨷 吏吏湲곗뿉꽌 諛쒖깮븯뒗 LAS 諛쒖깮怨 諛젒븳 愿젴씠 엳떎怨 븷 닔 엳떎.

꽑뻾뿰援ъ뿉꽌 옄꽭 議곗젅 뒫젰怨 LAS 諛쒖깮怨쇱쓽 愿怨꾨 洹쒕챸븯뒗뜲10,12,13,15,16, 湲됱꽦 LAS 솚옄뱾 遺긽 썑 쁽엳 븯맂 젙쟻 옄꽭 議곗젅 뒫젰쓣 蹂댁쑝硫12 Star Excursion Balance Test (SEBT)瑜 씠슜븳 룞쟻 옄꽭 議곗젅 떆 븵履(anterior, ANT), 뮘븞履(posteromedial, PM), 뮘諛붽묑履(posterolateral, PL) 諛⑺뼢뿉 빐꽌 룄떖 嫄곕━媛 以꾩뼱뱾뼱 룞쟻 洹좏삎 뒫젰룄 媛먯냼븯뒗 寃껋쓣 솗씤븯떎13. 삉븳, CAI 솚옄뒗 젙쟻 옄꽭 議곗젅 以 議곌뎔뿉 鍮꾪빐 醫뚯슦 諛 븵뮘 COP 씠룞 냽룄媛 利앷븯쑝硫10,15, SEBT 룞쟻 옄꽭 議곗젅 以 吏㏃ 룄떖 嫄곕━瑜 蹂댁엫쑝濡쒖뜥 湲됱꽦 LAS 솚옄 룞씪븳 뼇긽쓣 蹂댁뿬二쇱뿀떎. 肄뷀띁 븿猿 鍮꾧탳븳 뿰援щ뱾쓣 궡렣蹂대㈃, CAI 솚옄媛 SEBT쓽 PM 諛⑺뼢17怨 ANT 諛⑺뼢18뿉꽌 肄뷀띁 議곌뎔뿉 鍮꾪빐 쟻 룄떖 嫄곕━瑜 蹂댁떎. 諛섎㈃ Steib 벑19 CAI 솚옄 議곌뎔 媛 ANT 諛붽묑(lateral) 諛⑺뼢뿉꽌 룄떖 嫄곕━쓽 李⑥씠瑜 蹂댁뿬二쇱뿀쑝굹 肄뷀띁뒗 넻怨꾩쟻 李⑥씠媛 뾾떎怨 蹂닿퀬븯뿬 븵쓽 뿰援щ뱾怨 긽諛섎맂 寃곌낵瑜 蹂댁뿬二쇱뿀떎. Pionnier 벑16룄 CAI 솚옄媛 諛쒕ぉ 遺덉븞젙꽦怨 LAS 諛쒖깮쓣 留됯린 쐞빐 議곌뎔蹂대떎 뒓由ш쾶 COP瑜 씠룞떆궎뒗 쟾왂쓣 궗슜븳떎怨 븯뿬, 쁽옱 諛쒕ぉ 뿼醫 遺긽쓽 愿젏뿉꽌 洹좏삎 議곗젅 뒫젰뿉 븳 떎뼇븳 뿰援 寃곌낵뱾씠 蹂닿퀬릺怨 엳떎.

젙쟻 諛 룞쟻 洹좏삎 議곗젅쓣 룷븿븯뿬 肄뷀띁媛 CAI濡 븙솕븯吏 븡뒗 湲곗쟾뿉 빐 꽑뻾뿰援щ뱾씠 떎뼇븳 寃곌낵瑜 젣떆븯怨 엳쑝굹, 肄뷀띁媛 젙쟻 諛 룞쟻 洹좏삎 議곗젅 以 솢슜븯뒗 吏곸엫 쟾왂怨 吏(quality)쓣 솗씤븳 뿰援щ뒗 誘몃퉬븯떎. SEBT瑜 닔뻾븳 꽑뻾뿰援щ뱾 二쇰줈 룄떖 嫄곕━留뚯쓣 鍮꾧탳븳 寃곌낵媛 遺遺꾩씠硫, COP瑜 씠슜븯뿬 肄뷀띁쓽 洹좏삎 議곗젅 뒫젰쓣 寃궗븳 뿰援щ뒗 留롮 븡떎. 洹몃윭誘濡 LAS 諛젒븳 愿젴씠 엳뒗 COP쓽 씠룞, 냽룄 諛 蹂룞꽦怨 愿젴맂 蹂씤뱾쓣 寃궗븯뿬, 젙쟻 諛 룞쟻 옄꽭 議곗젅 떆 肄뷀띁媛 솢슜븯뒗 쟾왂怨 吏덉씠 CAI 솚옄 諛 議곌뎔怨 뼱뼚븳 李⑥씠媛 엳뒗吏 솗씤븷 븘슂媛 엳떎.

뵲씪꽌 蹂 뿰援щ뒗 肄뷀띁, CAI 솚옄, 議곌뎔 媛 젙쟻 諛 룞쟻 옄꽭 議곗젅 떆 COP 蹂씤쓽 李⑥씠瑜 솗씤븯뿬 洹좏삎 議곗젅쓽 쟾왂怨 吏덉쓣 鍮꾧탳븯怨좎옄 븯떎. 蹂 뿰援ъ쓽 媛꽕 “肄뷀띁쓽 COP 씠룞, 냽룄 諛 蹂룞꽦쓣 룷븿븳 젙쟻 諛 룞쟻 옄꽭 議곗젅 쟾왂 CAI 솚옄 議곌뎔蹂대떎 슦닔븷 寃껋씠떎”씪怨 꽕젙븯떎.

뿰援 諛⑸쾿

1. 뿰援 긽

蹂 뿰援ъ뿉꽌뒗 肄뷀띁, CAI 솚옄, 議곌뎔쓽 湲곗뿉 異⑹”릺뒗 뵾뿕옄瑜 媛 20紐낆뵫 紐⑥쭛븯뿬, 珥 60紐낆쓽 뿰援 긽옄媛 떎뿕뿉 李몄뿬븯떎. 씠뒗 꽭 吏묐떒 媛 李⑥씠瑜 솗씤븯湲 쐞빐 몴蹂 닔 怨꾩궛 봽濡쒓렇옩(G*power, version 3.1.9.2; University of Kiel, Kiel, Germany)쓽 寃곌낵뿉 洹쇨굅븯뿬 닔吏묓븯떎. Wikstrom 벑10쓽 뿰援ъ뿉꽌 젙쟻 옄꽭 議곗젅 寃궗瑜 넻빐 痢≪젙븳 븳 븵뮘 COP 蹂씤(η2=0.185)쓣 씠슜븯뿬, 쑀쓽닔以 0.05, 洹몃━怨 寃젙젰 0.80쑝濡 꽕젙븳 寃곌낵 븘슂븳 뿰援щ긽옄 닔뒗 48紐낆쑝濡 굹궗쑝硫, 蹂 뿰援ъ뿉꽌뒗 꽑뻾뿰援щ낫떎 寃젙젰쓣 넂씠湲 쐞븯뿬 25% (12紐)瑜 異붽 紐⑥쭛븯뿬 떎뿕쓣 吏꾪뻾븯떎. 蹂 뿰援щ뒗 뿰꽭븰援 깮紐낆쑄由ъ떖쓽쐞썝쉶瑜 넻빐 듅씤諛쏆 궡슜쓣 湲곕컲쑝濡 닔뻾븯떎(No. 7001988-202001-HR-779-02). 蹂 뿰援ъ뿉꽌 紐⑥쭛맂 肄뷀띁쓽 룷븿 湲곗 Wikstrom怨 Brown5쓽 뿰援щ 李멸퀬븯쑝硫, 꽭遺 湲곗 떎쓬怨 媛숇떎. (1) LAS 蹂묐젰씠 2踰 씠븯씤 옄, (2) 諛쒕ぉ 遺덉븞젙꽦 議곗궗吏(Ankle Instability Instrument, AII) ‘삁’ 빆紐⑹씠 3媛 씠븯씤 옄, (3) 諛/諛쒕ぉ 슫룞뒫젰 痢≪젙 議곗궗吏(Foot and Ankle Ability Measure, FAAM)쓽 씪긽깮솢(activities of daily living, ADL) 泥숇룄 젏닔媛 99% 씠긽씤 옄; (4) FAAM 議곗궗吏쓽 뒪룷痢(Sports) 솢룞 泥숇룄 젏닔媛 97% 씠긽씤 옄, (5) 쁽옱 諛쒕ぉ 愿젅쓽 遺덉븞젙 利앹긽씠 뾾뒗 옄.

CAI 솚옄 紐⑥쭛쓣 쐞븳 뿰援 룷븿 湲곗 援젣 諛쒕ぉ 삊쓽쉶(International Ankle Consortium)뿉꽌 젣떆븳 沅뚭퀬븞쓣 李멸퀬븯쑝硫, 꽭遺 湲곗 떎쓬怨 媛숇떎20. (1) 뿼利앸컲쓳怨 넻利앹쓣 룞諛섑븳 떖媛곹븳 LAS瑜 理쒖냼 1踰 寃쏀뿕븳 옄, (2) 吏궃 6媛쒖썡媛 2踰 씠긽쓽 諛쒕ぉ 愿젅쓽 遺덉븞젙꽦쓣 寃쏀뿕븳 옄, (3) AII쓽 ‘삁’ 빆紐⑹씠 5媛 씠긽씤 옄, (4) FAAM–ADL 泥숇룄 젏닔媛 90% 誘몃쭔씤 옄, (5) FAAM–Sports 泥숇룄 젏닔媛 80% 誘몃쭔씤 옄.

蹂 뿰援ъ뿉꽌 議곌뎔쓽 젙쓽뒗 떎쓬怨 媛숇떎. (1) LAS瑜 寃쏀뿕븯吏 븡 옄, (2) 쁽옱 씪긽깮솢뿉꽌 諛쒓낵 諛쒕ぉ쓽 넻利 諛 遺덉븞젙꽦씠 뾾뒗 옄(FAAM–ADL=100%), (3) 쁽옱 뒪룷痢 솢룞 以 諛쒓낵 諛쒕ぉ쓽 넻利 諛 遺덉븞젙꽦씠 뾾뒗 옄(FAAM–ADL=100%). 꽭 吏묐떒쓽 뿰援 젣쇅 湲곗 떎쓬怨 媛숇떎: (1) 뿰援 李몄뿬 쟾 3媛쒖썡媛 뿁뜦씠, 臾대쫷, 諛쒕ぉ 愿젅쓣 룷븿븳 븯吏 遺긽쓣 寃쏀뿕븳 옄, (2) 怨쇨굅 븯吏 怨⑥젅 諛 닔닠 蹂묐젰씠 엳뒗 옄, (3) 洹좏삎 뒫젰 옣븷, 떊寃쎈퀝利, 洹쇱떊寃쎄퀎 벑쓽 씠긽쑝濡 젙쟻 諛 룞쟻 옄꽭 議곗젅 痢≪젙뿉 吏옣씠 엳뒗 옄.

2. 뿰援ъ젅李 諛 痢≪젙룄援

紐⑤뱺 뿰援 李몄뿬옄뒗 씪긽깮솢怨 뒪룷痢 솢룞 떆 二쇨쟻쑝濡 옄媛곹븯뒗 諛쒕ぉ 愿젅쓽 넻利 諛 湲곕뒫 닔以쓣 議곗궗븯뒗 꽕臾몄씤 AII, FAAM–ADL, FAAM–Sports瑜 옉꽦븯쑝硫, 씠 議곗궗吏뱾 븳援뼱濡 踰덉뿭븯뿬 떊猶곕룄 떦룄 寃利앹쓣 셿猷뚰븯떎21. 떎뿕떎뿉 援щ퉬맂 슫룞蹂듦낵 슫룞솕瑜 李⑹슜븳 썑, 5遺꾧컙 媛踰쇱슫 떖由ш린瑜 넻빐 以鍮꾩슫룞쓣 닔뻾뻽떎. 뜲씠꽣 遺꾩꽍쓣 쐞빐 CAI 솚옄 肄뷀띁뒗 LAS媛 諛쒖깮븳 遺긽 諛(injured foot)쓣 痢≪젙븯怨, 議곌뎔 二 諛(dominant foot)쓣 궗슜븯뿬 젙쟻 諛 룞쟻 옄꽭 議곗젅 뒫젰쓣 痢≪젙븯떎.

1) 젙쟻 옄꽭 議곗젅 뒫젰 痢≪젙

젙쟻 옄꽭 議곗젅 뿰援 李몄뿬옄媛 옒 뙋(Accusway Plus balance force plate; AMTI, Watertown, MA, USA) 쐞뿉꽌 留⑤컻濡 꽑 뮘, LAS 蹂묐젰씠 엳嫄곕굹 二쇰줈 궗슜븯뒗 븳 떎由(single-leg)濡 諛섎 諛쒖쓣 뱶뒗 닚媛꾨꽣 10珥덇컙 洹좏삎쓣 쑀吏븳 긽깭濡 痢≪젙븯떎(Fig. 1A). 뿰援 李몄뿬옄뒗 젙쟻 옄꽭 議곗젅 痢≪젙 以 떆꽑 늿넂씠 룞씪븳 젙硫댁쓽 몴떆젏쓣 二쇱떆븯쑝硫, 뼇넀 뿁뜦堉덈뒫꽑(iliac crest)뿉 삱由щ룄濡 븯떎. 鍮꾧궗 떎由ъ쓽 뿁뜦 愿젅怨 臾대쫷 愿젅 媛곴컖 90° 援쏀옒(flexion) 긽깭瑜 쑀吏븯떎(Fig. 1B). 젙쟻 옄꽭 議곗젅 痢≪젙 떎뙣 湲곗 떎쓬怨 媛숇떎. (1) 吏吏븯吏 븡 諛쒖씠 吏硫댁뿉 떯쓬, (2) 吏吏븯뒗 諛쒖씠 옒 뙋뿉 뼥뼱吏, (3) 10珥덇컙 洹좏삎쓣 쑀吏븯吏 紐삵븿. 젙쟻 옄꽭 議곗젅 以 COP 뜲씠꽣뒗 50 Hz濡 湲곕줉릺뿀떎.

Fig. 1. Static balance assessment on the force plate. Anterior (A) and lateral (B) view.

2) 룞쟻 옄꽭 議곗젅 뒫젰 痢≪젙

룞쟻 옄꽭 議곗젅 痢≪젙 SEBT瑜 씠슜븯떎. 痢≪젙 젅李⑤ 媛꾩냼솕븯湲 쐞빐 SEBT쓽 뿬뜜 諛⑺뼢 以 꽑뻾뿰援ъ뿉꽌 沅뚭퀬맂 ANT (Fig. 2A), PM (Fig. 2B), PL (Fig. 2C) 꽭 諛⑺뼢뿉 븳 寃궗瑜 떎떆븯떎22. SEBT 룞쟻 옄꽭 議곗젅 쟻쇅꽑 移대찓씪(MX-F20; Vicon Motion Systems, Oxford, UK) 옒 뙋(ORG-6; AMTI)쓣 룷븿븳 3李⑥썝 룞옉 遺꾩꽍 떆뒪뀥씤 Nexus version 1.8.5 (Vicon Motion Systems)瑜 씠슜븯뿬 룊媛븯떎. 떊泥 遺꾩젅 紐⑤뜽留 援ъ꽦 룞쟻 옄꽭 議곗젅 痢≪젙 以 떆옉 援ш컙怨 醫낅즺 援ш컙쓣 꽕젙븯湲 쐞빐 닔뻾븯쑝硫, 씠瑜 쐞빐 뿰援 긽옄쓽 궎, 紐몃Т寃, 떎由 湲몄씠, 臾대쫷 諛 諛쒕ぉ 꼫鍮꾩쓽 痢≪젙怨 29媛쒖쓽 諛섏궗 留덉빱 諛 異붿쟻쓣 쐞븳 16媛쒖쓽 留덉빱瑜 怨⑤컲怨 꽇떎由, 醫낆븘由, 諛 遺꾩젅뿉 遺李⑺븯떎. 뿰援 긽옄뒗 寃궗븯뒗 諛쒖쓣 옒 뙋쓽 以묒븰뿉 쐞移섑븳 썑 뵛怨 엳뒗 諛쒖씠 吏硫댁뿉꽌 뼥뼱吏吏 븡룄濡 쑀吏븯硫 泥댁쨷쓣 吏吏븯吏 븡뒗 떎由щ 媛 諛⑺뼢쑝濡 理쒕븳 硫由 六쀫룄濡 吏떆諛쏆븯떎. 룞쟻 옄꽭 議곗젅 뒫젰 痢≪젙 以 COP 쐞移 뜲씠꽣뒗 븳 諛쒕줈 洹좏삎쓣 옟 SEBT쓽 떆옉 援ш컙遺꽣 닔吏묓븯쑝硫, 뵾뿕옄媛 媛 諛⑺뼢쑝濡 六쀬쓣 닔 엳뒗 理쒕 吏젏쓣 醫낅즺 援ш컙쑝濡 젙쓽븯뿬 痢≪젙븯떎. 뼇넀쓣 뿁뜦堉덈뒫꽑뿉 쐞移섑븯뿬 룞쟻 옄꽭 議곗젅 以 긽泥댁쓽 媛쒖엯쓣 理쒖냼솕븯떎. SEBT 痢≪젙 떎뙣 湲곗 떎쓬怨 媛숇떎. (1) 떎由щ 六쀬 썑 떆옉 옄꽭濡 룎븘삤吏 紐삵븿, (2) 넀씠 뿁뜦堉덈뒫꽑뿉꽌 뼥뼱吏, (3) 옒 뙋 쐞뿉 吏吏븳 諛쒖씠 吏곸엫, (4) 洹좏삎쓣 엪怨 鍮꾧궗 떎由щ줈 諛붾떏쓣 젒珥됲븿. 뿰援 긽옄뒗 媛 諛⑺뼢留덈떎 3踰덉쓽 뿰뒿 떆룄 썑 寃궗瑜 떎떆븯떎.

Fig. 2. Assessment Star Excursion Balance Test. Anterior (A), posteromedial (B), and posterolateral (C) directions.

3. 뜲씠꽣 遺꾩꽍 諛 泥섎━

젙쟻 옄꽭 議곗젅 寃궗 떆 닔吏묐맂 COP 뜲씠꽣뒗 Balance Clinic Analysis 봽濡쒓렇옩(version 2.02.01, AMTI)쓣 넻빐 泥섎━릺뿀쑝硫, 5 Hz쓽 4李 뿭(fourth-order low-pass) Butterworth 븘꽣瑜 넻빐 끂씠利덈 젣嫄고븯떎23. SEBT 룞쟻 옄꽭 議곗젅 룊媛瑜 쐞빐 遺李⑸맂 諛섏궗 留덉빱쓽 뜲씠꽣뒗 紐⑥뀡 罹≪쿂 냼봽듃썾뼱(Nexus version 1.8.5)瑜 넻빐 닔吏묓븯떎. 룞쟻 옄꽭 議곗젅쓣 痢≪젙븯뒗 룞븞 닔吏묐맂 留덉빱 쐞移 뜲씠꽣 吏硫 諛섎젰 뜲씠꽣뒗 Visual 3D 봽濡쒓렇옩(version 6.01.06; C-Motion, Germantown, MD, USA)쓣 씠슜븯뿬 泥섎━븯쑝硫, 씠뒗 COP 뜲씠꽣 닔吏묒쓽 떆옉 諛 醫낅즺 援ш컙쓣 솗씤븯湲 쐞빐 궗슜븯떎. SEBT쓽 理쒕 룄떖 吏젏 2踰덉㎏ 以묒”怨 癒몃━(2nd metatarsal head)뿉 遺李⑺븳 諛섏궗 留덉빱쓽 쐞移 醫뚰몴瑜 옒 뙋쑝濡쒕꽣 媛옣 癒 吏젏쑝濡 젙쓽븯떎. COP 쐞移 뜲씠꽣瑜 넻븳 COP 몴以렪李, 踰붿쐞, 룊洹 냽룄瑜 怨꾩궛븯쑝硫, 젙쟻 옄꽭 議곗젅쓽 寃쎌슦 COP 寃쎈줈 湲몄씠(path length) 95% 硫댁쟻쓣 븿猿 궛異쒗븯떎24. 95% 硫댁쟻 蹂씤 10珥 룞븞 닔吏묐맂 COP 寃쎈줈瑜 넻빐 삎꽦맂 썝 硫댁쟻쓽 95%瑜 궛異쒗뻽떎. COP 寃쎈줈 湲몄씠뒗 x異뺢낵 y異뺤뿉꽌쓽 2李⑥썝 COP 醫뚰몴 媛믪쓣 씠 꽑쓽 湲몄씠瑜 넻빐 怨꾩궛븯떎. COP 몴以렪李⑤뒗 蹂룞꽦(variability)쓣 痢≪젙븯湲 쐞븳 蹂씤쑝濡, 痢≪젙 援ш컙 룞븞 뼹留덈굹 씪愿맂 洹좏삎 뒫젰쓣 蹂댁뿬二쇱뿀뒗吏 솗씤븯湲 쐞빐 닔吏묓븯떎23.

4. 넻怨 泥섎━

蹂 뿰援ъ뿉꽌 닔吏묐맂 紐⑤뱺 뜲씠꽣뒗 IBM SPSS version 26.0 (IBM Corp., Armonk, NY, USA)瑜 넻빐 遺꾩꽍븯떎. 紐⑤뱺 醫낆냽 蹂닔뿉 빐꽌 Kolmogorov-Smirnov test瑜 넻븳 젙洹쒖꽦 寃利앷낵 Levene test瑜 씠슜븯뿬 룞吏덉꽦 寃利앹쓣 떎떆븯쑝硫, 몢 寃利 紐⑤몢瑜 留뚯”븯吏 紐삵븯뒗 蹂닔뿉 빐꽌뒗 鍮꾨え닔 넻怨 寃젙쓣 떎떆븯떎. 肄뷀띁, CAI 솚옄, 議곌뎔 媛 젙쟻 諛 룞쟻 옄꽭 議곗젅 떆 COP 李⑥씠瑜 遺꾩꽍븯湲 쐞빐 씪썝 諛곗튂 遺꾩궛 遺꾩꽍(one-way analysis of variance, one-way ANOVA)怨 Kruskal-Wallis H 寃젙쓣 닔뻾븯떎. 젙쟻 옄꽭 議곗젅 寃궗쓽 4媛 蹂씤(COP 寃쎈줈 湲몄씠, 醫뚯슦 COP 몴以렪李, 븵뮘 COP 몴以렪李 諛 냽룄), SEBT-ANT쓽 2媛 蹂씤(醫뚯슦 COP 몴以렪李 諛 룊洹 냽룄), SEBT-PL쓽 2媛 蹂씤(醫뚯슦 諛 븵뮘 룊洹 냽룄) one-way ANOVA瑜 넻빐 寃利앺븯떎. 젙쟻 옄꽭 議곗젅 寃궗쓽 4媛 蹂씤(95% COP 硫댁쟻, 醫뚯슦 COP 踰붿쐞 諛 룊洹 냽룄, 븵뮘 COP 踰붿쐞), SEBT-ANT쓽 4媛 蹂씤(醫뚯슦 COP 踰붿쐞, 븵뮘 COP 몴以렪李, 踰붿쐞 諛 룊洹 냽룄), SEBT-PM쓽 紐⑤뱺 蹂씤, SEBT-PL쓽 4媛 蹂씤(醫뚯슦 COP 몴以렪李 諛 踰붿쐞, 븵뮘 COP 몴以렪李 諛 踰붿쐞) Kruskal-Wallis H 寃젙쓣 넻빐 遺꾩꽍븯떎. One-way ANOVA쓽 슚怨 겕湲(effect size)뒗 partial eta squared (η2p)쓽 媛믪쓣 넻빐 怨꾩궛븯쑝硫, Kruskal-Wallis H 寃젙쓽 寃쎌슦 H媛믪쓣 씠슜븳 eta squared (η2H)瑜 넻빐 궛異쒗븯떎25. Eta squared쓽 슚怨 겕湲곕뒗 겮(large, ≥0.14), 以묎컙(medium, ≥0.06) 옉쓬(small, ≥0.01) 벑 꽭 닔以쑝濡 遺꾨쪟븯떎. 궗썑遺꾩꽍 Bonferroni 寃젙쓣 궗슜븯떎. 궗썑遺꾩꽍쓽 슚怨 겕湲 怨꾩궛 Cohen’s d 怨듭떇쓣 씠슜븯쑝硫, 겮(≥0.8), 以묎컙(≥0.5) 옉쓬(≥0.8) 벑 꽭 닔以쑝濡 遺꾨쪟븯떎. 넻怨꾩쟻 쑀쓽닔以(α) 0.05濡 꽕젙븯떎.

寃 怨

꽭 吏묐떒 媛 씤援ы넻怨꾩쟻 李⑥씠瑜 솗씤븯湲 쐞븳 one-way ANOVA 遺꾩꽍 寃곌낵, 굹씠(F(2, 57)=0.656, p=0.523), 떊옣(F(2, 57)=0.092, p=0.913) 諛 泥댁쨷(F(2, 57)=0.231, p=0.794) 紐⑤몢 쑀쓽븳 넻怨꾩쟻 李⑥씠媛 굹굹吏 븡븯떎(Table 1).

Table 1 . Characteristics of participants and questionnaire scores

VariableTotalLAS copersPatients with CAIControls
Characteristic
No. of subjects60202020
Sex, male:female39:2112:812:815:5
Age (yr)27.2±4.4227.85±4.5026.3±4.9527.45±3.80
Height (cm)174.24±7.70173.64±7.72174.41±8.39174.66±7.33
Body mass (kg)70.93±13.3771.95±13.6171.57±16.6069.26±9.47
No. of ankle sprains (reps)3.46±8.241.35±0.499.03±12.680
Questionnaire
AII (number of ’yes’)3.28±3.192.15±0.577.15±1.980
FAAM (%)
ADL95.75±6.0899.88±0.3787.35±1.86100±0
Sports91.22±13.0799.55±1.1174.1±8.18100±0

Values are expressed as number only or mean±standard deviation.

LAS: lateral ankle sprain, CAI: chronic ankle instability, reps: repetitions, AII: Ankle Instability Instrument, FAAM: Foot and Ankle Ability Measure, ADL: activities of daily living.



1. 젙쟻 옄꽭 議곗젅 떆 COP 李⑥씠

젙쟻 옄꽭 議곗젅 떆 COP 寃쎈줈 湲몄씠(F(2, 57)=2.268, p=0.113) COP 95% 硫댁쟻(H(2, 57)=3.123, p=0.210) 蹂씤뿉꽌뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎. 씠留덈㈃뿉꽌쓽 젙쟻 옄꽭 議곗젅 遺꾩꽍 寃곌낵, 醫뚯슦 COP 踰붿쐞뒗 吏묐떒 媛 쑀쓽븳 李⑥씠瑜 蹂댁쑝硫(H(2, 57)=18.322, p<0.001, η2H=0.29), 궗썑遺꾩꽍 寃곌낵 肄뷀띁媛 CAI 솚옄(p=0.001, d=1.15) 議곌뎔(p=0.001, d=1.25)蹂대떎 醫뚯슦 COP 踰붿쐞媛 쟻 寃껋쓣 솗씤븯떎. 洹몃윭굹 씠留덈㈃뿉꽌쓽 醫뚯슦 COP 몴以렪李(F(2, 57)=1.930, p=0.154) 醫뚯슦 COP 냽룄(H(2, 57)=3.429, p= 0.180)뒗 吏묐떒 媛 李⑥씠媛 뾾뿀떎(Table 2). 젙쟻 옄꽭 議곗젅쓽 떆긽硫댁뿉꽌뒗 븵뮘 COP 몴以렪李(F(2, 57)=3.756, p=0.029, η2p= 0.17), 븵뮘 COP 踰붿쐞(H(2, 57)=8.365, p=0.015, η2H=0.11) 諛 븵뮘 COP 냽룄(F(2, 57)=4.411, p=0.017, η2p=0.13) 蹂씤뿉꽌 吏묐떒 媛 李⑥씠瑜 愿李고븯떎. 궗썑遺꾩꽍 寃곌낵, 씠留덈㈃뿉꽌 肄뷀띁媛 CAI 솚옄뿉 鍮꾪빐 옉 븵뮘 COP 몴以렪李(p=0.034, d=0.77), 쟻 븵뮘 COP 踰붿쐞(p=0.009, d=1.0) 諛 뒓由 븵뮘 COP 룊洹 냽룄(p=0.013, d=0.82)瑜 媛吏 寃껋쑝濡 굹궗떎(Table 2).

Table 2 . Results of center of pressure (COP) value during static postural control

VariableLAS copersPatients with CAIControlsF/Hp-valueEffect sizePost-hoc analysis
COP path length (cm)16.34±4.118.75±3.0716.73±4.252.268§0.1130.07-
Area 95% confidence ellipse (cm2)0.85±0.371.06±0.410.89±0.263.1230.2100.02-
Mediolateral COP
Standard deviation (cm)0.20±0.050.22±0.040.21±0.031.930§0.1540.06-
Range (cm)0.91±0.131.06±0.131.06±0.1118.322<0.001***0.29Copers** Copers**
Mean velocity (cm/sec)1.11±0.31.24±0.131.14±0.353.4290.1800.03-
Anteroposterior COP
Standard deviation (cm)0.21±0.060.26±0.070.25±0.063.756§0.029*0.17Copers*
Range (cm)0.99±0.221.30±0.381.18±0.318.3650.015*0.11Copers**
Mean velocity (cm/sec)0.83±0.180.99±0.210.90±0.144.411§0.017*0.13Copers*

Values are presented as mean±standard deviation.

LAS: lateral ankle sprain, CAI: chronic ankle instability.

Effect size was calculated as eta square for Kruskal-Wallis H (η2H) and as partial eta square (η2p) for one-way analysis of variance (ANOVA). Statistical values were presented as H through Kruskal-Wallis H. §Statistical values were presented as F through one-way ANOVA.

*p<0.05, **p<0.01, ***p<0.001.



2. 룞쟻 옄꽭 議곗젅 떆 COP 李⑥씠

씠留덈㈃뿉꽌 SEBT-ANT 諛⑺뼢뿉 븳 룞쟻 옄꽭 議곗젅 遺꾩꽍 寃곌낵, 醫뚯슦 COP 몴以렪李(F(2, 57)=0.342, p=0.712), 醫뚯슦 COP 踰붿쐞(H(2, 57)=1.596, p=0.450) 諛 醫뚯슦 COP 냽룄(F(2, 57)=1.372, p=0.262) 蹂씤 쑀쓽븳 넻怨꾩쟻 李⑥씠媛 뾾뿀떎(Table 3). 떆긽硫댁뿉꽌 SEBT-ANT諛⑺뼢쓣 遺꾩꽍븳 寃곌낵, 븵뮘 COP 몴以렪李(H(2, 57)= 2.249, p=0.325), 븵뮘 COP 踰붿쐞(H(2, 57)=1.669, p=0.434) 諛 븵뮘 COP 냽룄(H(2, 57)=1.944, p=0.378) 蹂씤 紐⑤몢 넻怨꾩쟻 쑀쓽븳 李⑥씠瑜 諛쒓껄븷 닔 뾾뿀떎(Table 3).

Table 3 . Results of center of pressure (COP) value for anterior direction of Star Excursion Balance Test

VariableLAS copersPatients with CAIControlsF/Hp-valueEffect sizePost-hoc analysis
Mediolateral COP
Standard deviation (cm)0.26±0.10.26±0.090.28±0.070.342§0.7120.01-
Range (cm)1.14±0.891.10±0.441.10±0.351.5960.4500.01-
Mean velocity (cm/sec)1.86±0.72.24±1.031.87±0.691.372§0.2620.05-
Anteroposterior COP
Standard deviation (cm)0.10±0.070.12±0.140.08±0.022.2490.325<0.01-
Range (cm)0.60±0.760.52±0.560.34±0.121.6690.4340.01-
Mean velocity (cm/sec)1.39±0.721.74±1.21.27±0.411.9440.378<0.01-

Values are presented as mean±standard deviation.

LAS: lateral ankle sprain, CAI: chronic ankle instability.

Effect size was calculated as eta square for Kruskal-Wallis H (η2H) and as partial eta square (η2p) for one-way analysis of variance (ANOVA). Statistical values were presented as H through Kruskal-Wallis H. §Statistical values were presented as F through one-way ANOVA.



씠留덈㈃뿉꽌 SEBT-PM 諛⑺뼢뿉 븳 룞쟻 옄꽭 議곗젅 遺꾩꽍 寃곌낵, 醫뚯슦 COP 몴以렪李(H(2, 57)=6.292, p=0.043, η2H=0.08) 醫뚯슦 COP 踰붿쐞(H(2, 57)=6.342, p=0.042, η2H=0.08) 蹂씤뿉꽌 吏묐떒 媛 쑀쓽븳 李⑥씠媛 愿李곕릺뿀쑝굹, 醫뚯슦 COP 냽룄(H(2, 57)=2.227, p=0.328)뒗 吏묐떒 媛 쑀궗븳 닔以쓣 蹂댁떎(Table 4). 궗썑遺꾩꽍 寃곌낵, 肄뷀띁뒗 CAI 솚옄뿉 鍮꾪빐 옉 醫뚯슦 COP 몴以렪李(p=0.022, d=0.91) 쟻 醫뚯슦 COP 踰붿쐞(p=0.018, d=0.86)瑜 媛吏 寃껋쑝濡 굹궗떎. 떆긽硫댁뿉꽌 SEBT-PM 諛⑺뼢쓣 遺꾩꽍븳 寃곌낵, 븵뮘 COP 몴以렪李(H(2, 57)=1.952, p=0.377), 븵뮘 COP 踰붿쐞(H(2, 57)=5.495, p=0.064) 諛 븵뮘 COP 냽룄(H(2, 57)=2.414, p=0.299) 蹂씤 넻怨꾩쟻 쑀쓽븳 李⑥씠媛 뾾뿀떎(Table 4).

Table 4 . Results of center of pressure (COP) value for posteromedial direction of Star Excursion Balance Test

VariableLAS copersPatients with CAIControlsKruskal-Wallis Hp-valueEffect sizePost-hoc analysis
Mediolateral COP
Standard deviation (cm)0.17±0.050.22±0.060.18±0.056.2920.043*0.08Copers*
Range (cm)0.76±0.241.05±0.410.82±0.296.3420.042*0.08Copers*
Mean velocity (cm/sec)2.44±1.132.38±1.062.01±0.772.2270.328<0.01-
Anteroposterior COP
Standard deviation (cm)0.11±0.020.12±0.080.10±0.021.9520.377<0.01-
Range (cm)0.45±0.120.51±0.410.38±0.085.4950.0640.06-
Mean velocity (cm/sec)1.72±0.722.04±1.491.41±0.582.4140.2990.01-

Values are presented as mean±standard deviation.

LAS: lateral ankle sprain, CAI: chronic ankle instability.

Effect size was calculated as eta square for Kruskal-Wallis H (η2H).

*p<0.05.



씠留덈㈃뿉꽌 SEBT-PL 諛⑺뼢뿉 븳 룞쟻 옄꽭 議곗젅 뒫젰 遺꾩꽍 寃곌낵, 醫뚯슦 COP 몴以렪李(H(2, 57)=3.684, p=0.159), 醫뚯슦 COP 踰붿쐞 (H(2, 57)=4.222, p=0.121) 諛 醫뚯슦 COP 냽룄(F(2, 57)=0.026, p=0.975) 蹂씤 넻怨꾩쟻 쑀쓽븳 李⑥씠媛 뾾뿀떎(Table 5). 떆긽硫댁뿉꽌 SEBT-PL諛⑺뼢쓣 遺꾩꽍븳 寃곌낵, 븵뮘 COP 몴以렪李(H(2, 57)=0.744, p=0.689), 븵뮘 COP 踰붿쐞(H(2, 57)=0.167, p=0.920) 諛 븵뮘 COP 냽룄(F(2, 57)=0.368, p=0.693) 蹂씤 紐⑤몢 넻怨꾩쟻 쑀쓽븳 李⑥씠뒗 굹굹吏 븡븯떎(Table 5).

Table 5 . Results of center of pressure (COP) value for posterolateral direction of Star Excursion Balance Test

VariableLAS copersPatients with CAIControlsF/Hp-valueEffect sizePost-hoc analysis
Mediolateral COP
Standard deviation (cm)0.17±0.070.19±0.070.15±0.053.6840.1590.03-
Range (cm)0.92±0.730.90±0.420.69±0.244.2220.1210.04-
Mean velocity (cm/sec)2.55±1.142.51±0.822.48±0.880.026§0.975<0.01-
Anteroposterior COP
Standard deviation (cm)0.11±0.040.15±0.120.11±0.030.7440.6890.02-
Range (cm)0.58±0.490.76±1.150.49±0.330.1670.9200.03-
Mean velocity (cm/sec)1.73±0.721.81±0.731.93±0.800.368§0.6930.01-

Values are presented as mean±standard deviation.

LAS: lateral ankle sprain, CAI: chronic ankle instability.

Effect size was calculated as eta square for Kruskal-Wallis H (η2H) and as partial eta square (η2p) for one-way analysis of variance (ANOVA). Statistical values were presented as H through Kruskal-Wallis H. §Statistical values were presented as F through one-way ANOVA.


怨 李

옄꽭 議곗젅 뒫젰쓽 븯뒗 LAS 諛쒖깮쓽 二쇱슂 궡옱쟻 쐞뿕 슂씤 以 븯굹濡26, 湲됱꽦 뿼醫뚮줈 씤빐 넀긽맂 洹좏삎 뒫젰 吏냽쟻씤 LAS 諛 遺덉븞젙꽦쓣 쑀諛쒗븷 닔 엳떎. 洹몃윭誘濡 LAS 蹂묐젰씠 엳쓬뿉룄 遺덇뎄븯怨 CAI濡 븙솕릺吏 븡 肄뷀띁쓽 洹좏삎 뒫젰쓣 솗씤븯뒗 뿰援щ뒗 옱遺긽쓣 삁諛⑺븳떎뒗 愿젏뿉꽌 以묒슂븯떎. 씠뿉 蹂 뿰援щ뒗 肄뷀띁, CAI 솚옄, 議곌뎔 媛 COP 蹂씤쓣 以묒떖쑝濡 젙쟻 諛 룞쟻 옄꽭 議곗젅 쟾왂쓽 李⑥씠媛 엳뒗吏 솗씤븯湲 쐞빐 닔뻾븯떎. 蹂 뿰援ъ쓽 二쇱슂 寃곌낵뒗 떎쓬怨 媛숇떎. (1) 肄뷀띁뒗 CAI 솚옄 議곌뎔뿉 鍮꾪빐 떊泥 쓷뱾由쇱쓣 옒 젣뼱븯뒗 젙쟻 옄꽭 議곗젅 뒫젰쓣 媛吏 寃껋쑝濡 굹궗떎. 듅엳, 肄뷀띁뒗 떆긽硫댁뿉꽌 븵뮘 COP 몴以 렪李, 踰붿쐞 諛 룊洹 냽룄 꽭 蹂씤 紐⑤몢뿉꽌 CAI 솚옄蹂대떎 굹 젙쟻 洹좏삎 뒫젰쓣 蹂댁뿬二쇱뿀떎. (2) SEBT-PM 怨쇱젣뿉꽌 肄뷀띁媛 CAI 솚옄蹂대떎 씠留덈㈃뿉꽌쓽 뜑 쟻 醫뚯슦 COP 몴以렪李⑥ 踰붿쐞瑜 媛吏 寃껋쑝濡 솗씤릺뿀떎. (3) SEBT-ANT SEBT-PL 諛⑺뼢뿉꽌뒗 醫뚯슦 諛 븵뮘 COP 몴以렪李 諛 踰붿쐞 룊洹 냽룄쓽 李⑥씠뒗 愿李곕릺吏 븡븯떎. 뵲씪꽌 蹂 뿰援щ뒗 꽭 吏묐떒쓽 뜲씠꽣瑜 鍮꾧탳, 遺꾩꽍븳 寃곌낵 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 엳쓬쓣 젣떆븯쑝硫, 肄뷀띁쓽 젙쟻 諛 룞쟻 옄꽭 議곗젅 뒫젰 CAI 솚옄 議곌뎔蹂대떎 슦닔븷 寃껋씠씪뒗 媛꽕쓣 利앸챸븯떎.

蹂 뿰援ъ쓽 寃곌낵뒗 꽑뻾뿰援ъ 씪移섑븯뒗뜲, Wikstrom 벑10 肄뷀띁媛 CAI 솚옄蹂대떎 씠留덈㈃怨 떆긽硫댁뿉꽌 뒓由 COP 냽룄瑜 媛吏꾨떎怨 蹂닿퀬븯떎. LAS쓽 諛쒖깮 湲곗쟾쓣 궡렣蹂대㈃ 諛쒕ぉ 뿼醫뚮 쑀諛쒗븯뒗 븞履쎈쾲吏먯뿉 빐 湲댁쥌븘由ш렐(옣鍮꾧낏洹, peroneal longus)怨 吏㏃醫낆븘由ш렐(떒鍮꾧낏洹, peroneal brevis)씠 利됯컖쟻쑝濡 諛섏쓳븯吏 紐삵븯湲 븣臾몄뿉, 洹쇱쑁쓽 솢꽦留뚯쑝濡쒕뒗 LAS쓽 諛쒖깮쓣 留됯린 뼱졄떎(븞履쎈쾲吏 썑 醫낆븘由ш렐쓽 솢꽦怨 媛履쎈쾲吏[eversion] 룞옉쓽 깮꽦 媛곴컖 54, 176 msec쓽 떆媛꾩씠 븘슂븯떎)27. 삉븳, LAS 蹂묐젰씠 엳뒗 吏묐떒怨 CAI 솚옄뱾 遺긽쓣 寃쏀뿕븯吏 븡 諛쒖씠굹 議곌뎔뿉 鍮꾪빐 븞履쎈쾲吏먯뿉 諛섏쓳븯뒗 醫낆븘由ш렐쓽 솢꽦솕 떆媛꾩씠 뜑슧 뒓젮吏湲 븣臾몄뿉28, 鍮좊Ⅸ COP 씠룞 냽룄뿉 諛섏쓳븯吏 紐삵븯뿬 LAS瑜 寃쏀뿕븯뒗 寃껋쑝濡 뙋떒맂떎. 젙쟻 옄꽭 議곗젅 뒫젰쓣 鍮꾧탳븳 꽑뻾뿰援 삉븳 CAI 솚옄(2.24 cm/sec) 議곌뎔(1.45 cm/sec) 媛 븵뮘 COP 냽룄쓽 李⑥씠瑜 젣떆븯뿬23, 븵꽌 뼵湲됲븳 CAI 솚옄 LAS瑜 寃쏀뿕븳 吏묐떒씠 議곌뎔怨 떖由 LAS瑜 寃쏀뿕븯뒗 湲곗쟾쓣 뮮諛쏆묠븯뒗 寃곌낵瑜 蹂댁뿬二쇨퀬 엳떎. 썑냽 뿰援ъ뿉꽌뒗 肄뷀띁媛 蹂댁뿬以 洹좏삎 뒫젰씠 遺긽 씠쟾뿉 媛吏怨 엳뜕 媛쒖씤쓽 듅꽦씤吏, LAS瑜 寃쏀뿕븳 썑 遺긽怨 愿젴븳 利앹긽쓣 빐냼븯湲 쐞븳 끂젰쓽 寃곌낵씤吏 솗씤븷 븘슂媛 엳떎. 삉븳, 肄뷀띁媛 뼱뼚븳 遺꾩젅怨 愿젅쓣 솢슜븯뿬 뜑 굹 옄꽭 議곗젅 뒫젰쓣 蹂댁뿬二쇱뿀뒗吏 洹몃━怨 뿭룞쟻씤 怨쇱젣뿉꽌룄 룞씪븳 뼇긽쓣 蹂댁씪 닔 엳뒗吏 솗씤빐빞 븷 寃껋씠떎.

蹂 뿰援ъ뿉꽌 肄뷀띁뒗 젙쟻 옄꽭 議곗젅 떆 CAI 솚옄 議곌뎔뿉 鍮꾪빐 씠留덈㈃뿉꽌 쟻 COP 踰붿쐞瑜 굹깉쑝硫, 떆긽硫댁뿉꽌뒗 CAI 솚옄蹂대떎 쟻 COP 踰붿쐞瑜 솢슜븯뒗 寃껋쑝濡 솗씤릺뿀떎. 삉븳, 젙쟻 諛 룞쟻 옄꽭 議곗젅 떆 肄뷀띁媛 蹂댁뿬以 옄꽭 議곗젅 쟾왂 以 CAI 솚옄蹂대떎 쟻 COP 몴以렪李④ 굹궃 젏 二쇰ぉ빐빞 븷 寃곌낵씠떎. 利, 肄뷀띁뒗 COP 몴以렪李⑤ 궙寃 議곗젅븯뿬 蹂룞꽦쓣 以꾩씠뒗 씪愿맂 옄꽭 議곗젅 쟾왂쓣 蹂댁뿬二쇱뿀떎怨 븷 닔 엳뒗뜲, 씠뒗 떊泥 쓷뱾由쇱씠 留롮븘 諛쒖깮븷 닔 엳뒗 LAS瑜 삁諛⑺븯湲 쐞븳 諛⑹뼱 湲곗젣(defense mechanism)씪怨 븷 닔 엳떎. 씠뒗 諛섎濡 CAI 솚옄뒗 젙쟻 옄꽭 議곗젅 떆 넂 COP 蹂룞꽦쓣 蹂댁뿬二쇰뒗뜲, 몢 吏묐떒 媛 옄꽭 議곗젅쓽 蹂룞꽦 李⑥씠뒗 洹쇱떊寃 議곗젅 뒫젰쓽 湲곕뒫옣븷(dysfunction), 蹂寃쎈맂 洹쇱쑁 룞썝(altered muscular recruitment) 벑 CAI 愿젴맂 슂씤뱾濡 씤빐 諛쒖깮븳 寃껋쑝濡 蹂댁씤떎3,23. 肄뷀띁쓽 吏곸엫 쟾왂 LAS 諛쒖깮 愿젏뿉꽌 湲띿젙쟻쑝濡 옉슜븷 닔 엳쑝굹, 吏곸엫쓣 젣븳븯誘濡 슫룞 닔뻾 뒫젰뿉 븙쁺뼢쓣 誘몄튌 媛뒫꽦 삉븳 議댁옱븳떎16. 諛쒕ぉ 遺긽쓣 쉶뵾븯湲 쐞븳 肄뷀띁쓽 吏곸엫 듅꽦씠 슫룞닔뻾젰怨 뼱뼚븳 뿰愿씠 엳뒗吏 異뷀썑 뿰援ъ뿉꽌 옄꽭 議곗젅怨 愿젴 엳뒗 룞옉쓣 넻빐 솗씤븷 븘슂媛 엳떎.

蹂 뿰援ъ쓽 룞쟻 옄꽭 議곗젅 寃궗 寃곌낵, SEBT쓽 꽭 諛⑺뼢 以 PM 諛⑺뼢뿉꽌留 쑀쓽誘명븳 李⑥씠瑜 愿李고븯떎. 肄뷀띁뒗 SEBT-PM 怨쇱젣 닔뻾 以 씠留덈㈃뿉꽌쓽 COP 몴以렪李⑥ COP 踰붿쐞媛 CAI 솚옄蹂대떎 쟻뿀떎. 吏吏븯怨 엳뒗 떎由ъ뿉 臾닿쾶 以묒떖쓣 쑀吏븯硫 媛 諛⑺뼢쑝濡 媛뒫븳 癒 嫄곕━뿉 븯吏쓽 諛섎 遺꾩젅쓣 六쀫뒗 SEBT쓽 듅꽦쓣 怨좊젮뻽쓣 븣, 蹂 뿰援ъ뿉꽌 솗씤맂 룞쟻 옄꽭 議곗젅 寃곌낵뒗 PM 諛⑺뼢쓽 룞옉씠 넂 궃씠룄쓽 옄꽭 議곗젅 뒫젰쓣 슂援ы븯湲 븣臾몄씤 寃껋쑝濡 뙋떒맂떎. 떎젣濡 PM 諛⑺뼢쑝濡 닔뻾릺뒗 옄꽭 議곗젅 SEBT쓽 紐⑤뱺 諛⑺뼢쓣 媛옣 옒 몴븷 닔 엳뒗 怨쇱젣濡 蹂닿퀬릺뒗뜲29, 씠뒗 PM 諛⑺뼢쑝濡 옄꽭 議곗젅씠 臾대쫷怨 뿁뜦 愿젅쓽 留롮 援닿끝(flexion) 媛곷룄瑜 슂援ы븯뒗 넂 궃씠룄씠湲 븣臾몄씤 寃껋쑝濡 蹂댁뿬吏꾨떎30. Hertel 벑29 SEBT쓽 뿬뜜 諛⑺뼢 以 븵븞履(anteromedial), 븞履(medial), 뮘븞履 벑 꽭 諛⑺뼢쓽 룞옉씠 諛쒕ぉ 愿젅쓽 遺덉븞젙꽦쓣 솗씤븯湲 쐞븳 紐⑹쟻쑝濡 쑀슜븳 룞쟻 옄꽭 議곗젅 寃궗씪怨 蹂닿퀬븯떎. 씠 꽭 諛⑺뼢쓽 룞옉 紐⑤몢 吏吏븯怨 엳뒗 諛쒖쓽 諛섎痢≪뿉꽌 뻾빐吏먯쑝濡쒖뜥, 怨쇱젣 닔뻾 以 遺덉븞젙븳 諛쒕ぉ 愿젅濡쒕꽣 諛섎 븯吏 遺꾩젅씠 嫄곕━媛 硫뼱吏덉닔濡 LAS 諛쒖깮 諛 CAI濡 씤빐 븯맂 옄꽭 議곗젅 뒫젰씠 遺媛곷맂떎怨 븷 닔 엳떎. 씠뒗 諛섎濡, 肄뷀띁뒗 넂 닔以쓽 룞쟻 옄꽭 議곗젅 뒫젰쓣 슂援ы븯뒗 怨쇱젣뿉꽌 諛쒕ぉ 뿼醫 蹂묐젰씠 뾾뒗 議곌뎔怨 쑀궗븳 뒫젰쓣 蹂댁엫쑝濡쒖뜥 異붽쟻씤 遺긽쓣 寃れ 븡뒗떎怨 뙋떒맂떎. 씠濡쒖뜥 肄뷀띁뒗 LAS쓽 쁺뼢쑝濡 씤븳 옍뿬 利앹긽뿉꽌 셿쟾엳 쉶蹂듯뻽嫄곕굹 利앹긽 젙룄媛 吏곸엫뿉 쁺뼢쓣 誘몄튂吏 븡뒗 誘몃퉬븳 젙룄엫쓣 솗씤븷 닔 엳떎3.

蹂 뿰援щ뒗 紐 媛吏 젣븳젏씠 議댁옱븳떎. 泥 踰덉㎏, 諛쒕ぉ 愿젅 꽕臾몄瑜 넻빐 닔吏묐맂 二쇨쟻 利앹긽 젏닔뒗 쉶긽 鍮꾨슕由(recall bias)濡 씤빐 떎젣 떎냼 긽씠븷 닔 엳떎. 몢 踰덉㎏, LAS 蹂묐젰 쑀臾 諛 諛쒕ぉ 愿젅쓽 湲곕뒫 젏닔瑜 넻빐 肄뷀띁, CAI 솚옄, 議곌뎔 꽭 吏묐떒쑝濡 遺꾨쪟븯뿬 옄꽭 議곗젅 쟾왂쓣 鍮꾧탳븯쑝굹, 肄뷀띁쓽 옄꽭 議곗젅 쟾왂씠 슦닔븳 씠쑀뿉 빐 씤怨쇨怨 꽕紐낆씠 젣븳쟻씠떎. 꽭 踰덉㎏, 젙쟻 옄꽭 議곗젅 諛쒖쓽 媛먭컖湲곌쓣 理쒕븳 솢슜븷 닔 엳룄濡 留⑤컻濡 痢≪젙븯쑝굹, 遺遺꾩쓽 씪긽깮솢怨 뒪룷痢 李몄뿬媛 떊諛쒖쓣 李⑹슜븳 긽깭濡 씠猷⑥뼱吏꾨떎뒗 젏뿉꽌 떎뿕 寃곌낵 李⑥씠媛 엳쓣 닔 엳떎. 씠윭븳 젣븳젏뿉룄 遺덇뎄븯怨, 蹂 뿰援щ뒗 肄뷀띁쓽 옄꽭 議곗젅 쟾왂쓣 솗씤븿쑝濡쒖뜥 LAS 諛 CAI 솚옄뱾씠 諛섎났릺뒗 LAS 諛쒖깮쓣 留됯린 쐞빐 젙쟻 諛 룞쟻 옄꽭 議곗젅 뒫젰쓣 뼢긽떆耳쒖빞 븳떎뒗 紐⑺몴瑜 젣떆븷 닔 엳쓣 寃껋쑝濡 湲곕븳떎.

蹂 뿰援щ뒗 肄뷀띁, CAI 솚옄, 議곌뎔쓽 옄꽭 議곗젅 쟾왂쓣 鍮꾧탳븯怨 떎쓬怨 媛숈 寃곕줎쓣 젣떆븯怨좎옄 븳떎. (1) 肄뷀띁뒗 CAI 솚옄 議곌뎔蹂대떎 뜑 굹 젙쟻 옄꽭 議곗젅 뒫젰쓣 蹂댁떎. (2) 肄뷀띁뒗 SEBT 怨쇱젣 닔뻾 떆 CAI 솚옄蹂대떎 뜑 굹 룞쟻 옄꽭 議곗젅 뒫젰쓣 蹂댁뿬二쇱뿀떎. 寃곕줎쟻쑝濡 LAS 썑 옄꽭 議곗젅 뒫젰쓣 뼢긽떆궎뒗 寃껋 異붽쟻씤 뿼醫 諛 諛쒕ぉ 遺덉븞젙꽦쓣 삁諛⑺븯뒗 뜲 以묒슂븯誘濡, 쓽猷 諛 슫룞 쟾臾멸뱾 LAS 솚옄瑜 移섎즺븷 븣 젙쟻 諛 룞쟻 옄꽭 議곗젅 洹좏삎 뒫젰쓣 슚쑉쟻쑝濡 넂씪 닔 엳뒗 옱솢쓣 怨좎븞븯뿬빞 븷 寃껋씠떎. 異뷀썑 뿰援ъ뿉꽌뒗 떊泥 쓷뱾由쇱쓣 젣뼱븯뒗 뒫젰씠 쎇뼱궃 肄뷀띁쓽 옄꽭 議곗젅뿉 湲곗뿬븯뒗 슂씤뱾쓣 솗씤븯怨, 씤怨쇨怨꾨 洹쒕챸븷 븘슂媛 엳떎.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

We thank the Institute of Convergence Science (ICONS) of Yonsei University and the International Olympic Committee (IOC) Research Centre Korea for Prevention of Injury and Protection Athlete Health.

Author Contributions

Conceptualization: All authors. Data curation, Formal analysis: HGJ, IL. Methodology: All authors. Project administration: HGJ, SYL. Visualization: HGJ. Writing–Original Draft: HGJ. Writing–Review & Editing: IL, SYL.

References
  1. Gross MT. Effects of recurrent lateral ankle sprains on active and passive judgements of joint position. Phys Ther 1987;67:1505-9.
    Pubmed CrossRef
  2. Fallat L, Grimm DJ, Saracco JA. Sprained ankle syndrome: prevalence and analysis of 639 acute injuries. J Foot Ankle Surg 1998;37:280-5.
    Pubmed CrossRef
  3. Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train 2019;54:572-88.
    Pubmed KoreaMed CrossRef
  4. Wikstrom EA, Song K, Tennant JN, Dederer KM, Paranjape C, Pietrosimone B. T1ρ MRI of the talar articular cartilage is increased in those with chronic ankle instability. Osteoarthritis Cartilage 2019;27:646-9.
    Pubmed CrossRef
  5. Wikstrom EA, Brown CN. Minimum reporting standards for copers in chronic ankle instability research. Sports Med 2014;44:251-68.
    Pubmed CrossRef
  6. Wikstrom EA, Tillman MD, Chmielewski TL, Cauraugh JH, Naugle KE, Borsa PA. Self-assessed disability and functional performance in individuals with and without ankle instability: a case control study. J Orthop Sports Phys Ther 2009;39:458-67.
    Pubmed CrossRef
  7. Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Br J Sports Med 2005;39:e14.
    Pubmed KoreaMed CrossRef
  8. Konradsen L. Factors contributing to chronic ankle instability: kinesthesia and joint position sense. J Athl Train 2002;37:381-5.
    Pubmed KoreaMed
  9. Lee I, Ha S, Chae S, Jeong HS, Lee SY. Altered biomechanics in individuals with chronic ankle instability compared with copers and controls during gait. J Athl Train 2021 Aug 17. [Epub]. https://doi.org/10.4085/1062-6050-0605.20.
    Pubmed CrossRef
  10. Wikstrom EA, Fournier KA, McKeon PO. Postural control differs between those with and without chronic ankle instability. Gait Posture 2010;32:82-6.
    Pubmed CrossRef
  11. Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train 2002;37:71-9.
    Pubmed KoreaMed
  12. McKeon PO, Hertel J. Systematic review of postural control and lateral ankle instability, part I: can deficits be detected with instrumented testing. J Athl Train 2008;43:293-304.
    Pubmed KoreaMed CrossRef
  13. Doherty C, Bleakley CM, Hertel J, Caulfield B, Ryan J, Delahunt E. Laboratory measures of postural control during the Star Excursion Balance Test after acute first-time lateral ankle sprain. J Athl Train 2015;50:651-64.
    Pubmed KoreaMed CrossRef
  14. Lee I, Ha S, Kim CY, et al. Differences in center of pressure trajectory among individuals with chronic ankle instability, copers, and controls during gait. Korean J of Sport 2021;19:285-94.
    CrossRef
  15. Linens SW, Ross SE, Arnold BL, Gayle R, Pidcoe P. Postural-stability tests that identify individuals with chronic ankle instability. J Athl Train 2014;49:15-23.
    Pubmed KoreaMed CrossRef
  16. Pionnier R, Decoufour N, Barbier F, Popineau C, Simoneau-Buessinger E. A new approach of the Star Excursion Balance Test to assess dynamic postural control in people complaining from chronic ankle instability. Gait Posture 2016;45:97-102.
    Pubmed CrossRef
  17. Plante JE, Wikstrom EA. Differences in clinician-oriented outcomes among controls, copers, and chronic ankle instability groups. Phys Ther Sport 2013;14:221-6.
    Pubmed CrossRef
  18. McCann RS, Crossett ID, Terada M, Kosik KB, Bolding BA, Gribble PA. Hip strength and star excursion balance test deficits of patients with chronic ankle instability. J Sci Med Sport 2017;20:992-6.
    Pubmed CrossRef
  19. Steib S, Hentschke C, Welsch G, Pfeifer K, Zech A. Effects of fatiguing treadmill running on sensorimotor control in athletes with and without functional ankle instability. Clin Biomech (Bristol, Avon) 2013;28:790-5.
    Pubmed CrossRef
  20. Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Orthop Sports Phys Ther 2013;43:585-91.
    Pubmed CrossRef
  21. Ha SM. Reliability & validity of CAI assessment questionary: Korea version [master’s thesis]. Seoul: Graduate School of Yonsei Univ.; 2015.
  22. Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med 2008;27:353-70.
    Pubmed CrossRef
  23. Hertel J, Olmsted-Kramer LC. Deficits in time-to-boundary measures of postural control with chronic ankle instability. Gait Posture 2007;25:33-9.
    Pubmed CrossRef
  24. Ross SE, Linens SW, Wright CJ, Arnold BL. Balance assessments for predicting functional ankle instability and stable ankles. Gait Posture 2011;34:539-42.
    Pubmed CrossRef
  25. Tomczak M, Tomczak E. The need to report effect size esti-mates revisited: an overview of some recommended measures of effect size. Trends Sport Sci 2014;1:19-25.
  26. Delahunt E, Remus A. Risk factors for lateral ankle sprains and chronic ankle instability. J Athl Train 2019;54:611-6.
    Pubmed KoreaMed CrossRef
  27. Konradsen L, Voigt M, H첩jsgaard C. Ankle inversion injuries: the role of the dynamic defense mechanism. Am J Sports Med 1997;25:54-8.
    Pubmed CrossRef
  28. Hoch MC, McKeon PO. Peroneal reaction time after ankle sprain: a systematic review and meta-analysis. Med Sci Sports Exerc 2014;46:546-56.
    Pubmed CrossRef
  29. Hertel J, Braham RA, Hale SA, Olmsted-Kramer LC. Simplifying the star excursion balance test: analyses of subjects with and without chronic ankle instability. J Orthop Sports Phys Ther 2006;36:131-7.
    Pubmed CrossRef
  30. Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Dynamic balance deficits in individuals with chronic ankle instability compared to ankle sprain copers 1 year after a first-time lateral ankle sprain injury. Knee Surg Sports Traumatol Arthrosc 2016;24:1086-95.
    Pubmed CrossRef