search for



Analysis of Hip Joint Muscle Activity and Lower Extremity Kinematic Depending on Mulligan Knee Taping Application during Single Leg Squat
Korean J Sports Med 2023;41:207-215
Published online December 1, 2023;  https://doi.org/10.5763/kjsm.2023.41.4.207
© 2023 The Korean Society of Sports Medicine.

KyoungYeol Jeong1, TaeGyu Kim1, SooYong Kim2

1Department of Smart Healthcare, Marine Sports Major, Pukyong National University, Busan,
2Department of Physical Therapy, Pusan National University Yangsan Hospital, Yangsan, Korea
Correspondence to: SooYong Kim
Department of Physical Therapy, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan 50612, Korea
Tel: +82-55-360-421, Fax: +82-55-360-4242, E-mail: gasigogi11@naver.com
Received June 8, 2023; Revised October 28, 2023; Accepted November 6, 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Purpose: This study was aimed to identify the effect of Mulligan knee taping (MKT) application on the hip joint muscle activity and lower extremity kinematic during single leg squat.
Methods: Twenty healthy male partisipants, aged between 19 and 29 years, were measured for hip joint muscle activity, medial knee displacement, and hip adduction angles according to the application of MKT. In single leg squat, the eccentric, isometric, and concentric contraction phases were performed until the knee flexed at a depth of 60°. The muscle activity (unit, %MVIC) of hip joints in each phase and the medial knee displacement (unit, cm) and hip adduction angle (unit, °) were analyzed before and after the application of MKT during single leg squat. All measurements were performed with the dominant leg, and the order of MKT and non-taping was randomly determined by drawing lots.
Results: During single leg squat, the muscle activity of the gluteus maximus muscle in the eccentric and isometric contraction phases significantly increased when MKT was applied than when non-taping (p=0.048 and p=0.012, respectively). There was no statistically significant difference between the muscle activity of other lower extremity muscles and the medial knee displacement and hip adduction angle (p>0.05).
Conclusion: It was confirmed that the activity of the gluteus maximus muscle increased in the case where single leg squat was performed after applying MKT, compared to the case where it was performed without application. Therefore, MKT application is recommended to increase the muscle activity of the gluteus maximus during single leg squat.
Keywords : Genu valgum, Electromyography, Kinematics
꽌 濡

븳 떎由 뒪荑쇳듃(single leg squat)뒗 怨꾨떒 삤瑜대궡由ш린 媛숈 씪긽깮솢 룞옉肉먮쭔 븘땲씪 뒪룷痢 룞옉怨 愿젴씠 엳뼱, 옱솢 슫룞 諛 뒪룷痢 닔뻾 뒫젰 뼢긽쓣 쐞븳 슫룞 以 븯굹濡 궗슜릺怨 엳떎1. 삉븳 븳 떎由 뒪荑쇳듃瑜 닔뻾븯뒗 룞븞 吏吏痢 떎由ъ쓽 뿁뜦愿젅 媛履쎈룎由쇨렐怨 踰뚮┝洹쇱 臾대쫷 諛붽묑援쎌쓬(valgus) 吏곸엫뿉 빐 렪떖꽦 빆쓣 젣怨듯븯怨 뿁뜦愿젅쓽 踰뚮┝(abduction) 紐⑤찘듃(moment)瑜 깮궛븯湲 븣臾몄뿉2,3 겙蹂쇨린洹(몦洹, gluteus maximus muscle)怨 以묎컙蹂쇨린洹(以묐몦洹, gluteus medius muscle)쓣 媛뺥솕븯뒗 뜲 슚怨쇱쟻씠硫4, 泥댁쨷 遺븯 슫룞 以 蹂쇨린洹쇱쓽 솢꽦룄媛 媛옣 넂寃 굹굹뒗 슫룞쑝濡4, 泥댁쨷 遺븯 愿젴맂 씪긽깮솢 諛 뒪룷痢 솢룞怨 愿젴맂 湲곕뒫쟻 듅꽦쓣 蹂대떎 옒 옱쁽븷 닔 엳뒗 씠젏씠 엳떎. 븯吏留 븳 떎由 뒪荑쇳듃瑜 닔뻾븯뒗 룞븞 蹂댁긽 룞옉쑝濡 怨쇰룄븳 臾대쫷 諛붽묑援쎌쓬씠 諛쒖깮븷 닔 엳쑝硫3,5, 씠濡 씤빐 겙蹂쇨린洹 諛 以묎컙蹂쇨린洹쇱쓽 빟솕媛 諛쒖깮븷 닔 엳怨6, 洹몄 븿猿 뿁뜦愿젅 븞履쎈룎由 洹쇱쑁씤 꽇떎由ш렐留됯릿옣洹(tensor fascia latae)怨 湲대え쓬洹(adductor longus)쓽 怨쇰룄븳 洹쇳솢꽦룄媛 굹궇 닔 엳떎7,8. 뵲씪꽌 븳 떎由 뒪荑쇳듃瑜 닔뻾븯뒗 룞븞 겙蹂쇨린洹쇨낵 以묎컙蹂쇨린洹쇱쓽 洹 솢꽦룄瑜 利앷떆궎湲 쐞빐꽌뒗 臾대쫷 諛붽묑援쎌쓬쓣 媛먯냼떆궗 닔 엳뒗 諛⑸쾿씠 븘슂븯떎.

씠瑜 쐞빐꽌 蹂쇨린洹(몦洹, gluteus muscle) 媛뺥솕 슫룞, 떆媛곸쟻 뵾뱶諛 썕젴, 뿁뜦愿젅 踰뚮┝洹 媛뺥솕 슫룞, 肄붿뼱(core) 洹쇱쑁 媛뺥솕 슫룞, 湲곕뒫쟻 슫룞 벑 떎뼇븳 以묒옱 諛⑸쾿뱾씠 궗슜릺怨 엳떎9-11. 꽑뻾뿰援ъ뿉꽌 嫄닿컯븳 꽦씤 궓瑜 17紐낆쓣 긽쑝濡 蹂쇨린洹 媛뺥솕 썕젴 吏묐떒怨 떆媛곸쟻 뵾뱶諛 썕젴 吏묐떒쑝濡 굹늻뼱 6二쇨컙 썕젴 봽濡쒓렇옩쓣 떎떆븳 寃곌낵, 몢 吏묐떒 紐⑤몢 븳 떎由 뒪荑쇳듃 룞븞 臾대쫷 諛붽묑援쎌쓬怨 愿젴 엳뒗 뿁뜦愿젅 紐⑥쓬 媛곷룄(hip adduction angle) 愿긽硫 닾쁺媛곷룄(frontal plane projection angle)媛 媛먯냼븳 寃껋쑝濡 蹂닿퀬릺뿀떎9. 삉 떎瑜 뿰援ъ뿉꽌뒗 鍮꾩젙긽쟻씤 臾대쫷 슫룞븰(룞쟻 臾대쫷 諛붽묑援쎌쓬 諛 븞履쎈룎由)쓣 蹂댁씠뒗 援곗씤 42紐낆쓣 긽쑝濡 떎뼇븳 뒪荑쇳듃 룞옉씠 룷븿맂 湲곕뒫쟻 슫룞쓣 5二쇨컙 떎떆븳 寃곌낵, 臾대쫷 諛붽묑援쎌쓬 媛곷룄 뿁뜦愿젅 븞履쎈룎由 媛곷룄媛 媛곴컖 10° 諛 9° 媛먯냼븯뒗 寃쏀뼢씠 굹궗떎10.

븯吏 젙젹 諛 슫룞븰 蹂솕 븿猿 洹 솢꽦룄瑜 뼢긽븯湲 쐞븳 삉 떎瑜 諛⑸쾿쑝濡쒕뒗 뀒씠븨씠 엳쑝硫, 옱吏덉뿉 뵲씪 깂꽦 뀒씠븨怨 鍮 깂꽦 뀒씠븨쑝濡 援щ텇븯뿬 궗슜릺怨 엳떎. 궎꽕떆삤 뀒씠븨(kinesiology taping)쓽 슚怨쇰 遺꾩꽍븳 뿰援щ 蹂대㈃, Kim 벑12 뿬옄 냼봽듃蹂 꽑닔뱾뿉寃 꽇떎由щ 洹쇱쑁뿉 궎꽕떆삤 뀒씠븨쓣 쟻슜븯怨 6二쇨컙 뒪荑쇳듃 슫룞쓣 떎떆븳 寃곌낵, 뀒씠븨 吏묐떒씠 꺎 뀒씠븨(sham-taping) 吏묐떒蹂대떎 븞履쎈꼻洹, 媛履쎈꼻洹 諛 꽇떎由ш낍洹쇱쓽 솢꽦룄媛 넂寃 굹굹뒗 寃껋쓣 솗씤븯떎. Saki 벑13 룞쟻 臾대쫷 諛붽묑援쎌쓬쓣 媛吏 뿬꽦 슫룞꽑닔뱾뿉寃 以묎컙蹂쇨린洹 궎꽕떆삤 뀒씠븨쓣 쟻슜븳 썑 븳 떎由 뒪荑쇳듃瑜 닔뻾븳 寃쎌슦媛 뵆씪떆蹂 뀒씠븨(placebo taping)쓣 쟻슜븳 寃쎌슦蹂대떎 臾대쫷 諛붽묑援쎌쓬씠 媛먯냼릺뿀떎怨 蹂닿퀬븯떎. 鍮 깂꽦 뀒씠븨쓣 씠슜븳 硫由ш굔 臾대쫷 뀒씠븨(Mulligan knee taping, MTK) 臾대쫷堉(patellar) 젒珥됲븯吏 븡怨 臾대쫷 二쇱쐞뿉 굹꽑삎(spiral)쑝濡 쟻슜븯뿬, 꽇떎由щ펷뿉 빐 젙媛뺣펷瑜 븞履쎈룎由쇱떆궎嫄곕굹 泥댁쨷 遺븯 떆 怨좎젙맂 젙媛뺣펷뿉 빐 꽇떎由щ펷쓽 媛履쎈룎由쇱쓣 깮꽦븯湲 쐞빐 궗슜맂떎14,15. 떎젣 臾대쫷꽇떎由ы넻利앹쬆썑援(patellofemoral pain syndrome, PFPS)쓣 媛吏 꽦씤쓣 긽쑝濡 MKT瑜 쟻슜븳 寃쎌슦 븳 떎由 뒪荑쇳듃 떆 넻利앹씠 媛먯냼븯怨 理쒕 臾대쫷 紐⑥쓬 諛 理쒕 뿁뜦愿젅 븞履쎈룎由쇱씠 媛먯냼븯쑝硫16, 꽇떎由щ펷뿉 븳 젙媛뺣펷쓽 븞履쎈룎由쇱씠 利앷븯떎怨 蹂닿퀬릺뿀떎17.

씪諛섏쟻쑝濡 MKT媛 븳 떎由 뒪荑쇳듃瑜 닔뻾븯뒗 룞븞 뿁뜦愿젅 理쒕 븞履쎈룎由쇱쓣 媛먯냼떆耳 臾대쫷 諛붽묑援쎌쓬 媛먯냼뿉 슚怨쇱쟻씠씪怨 븣젮졇 엳떎. 븳 떎由 뒪荑쇳듃 룞븞 뿁뜦愿젅쓽 理쒕 븞履쎈룎由쇱쓽 媛먯냼뒗 蹂쇨린洹쇱쓽 렪떖꽦 닔異뺤쓣 利앷떆궗 닔 엳吏留2,3, 븯吏 洹쇱쑁쓽 솢꽦룄 蹂솕뿉 빐꽌 議곗궗븳 뿰援щ뒗 遺議깊븳 떎젙씠떎. 븳 뿰援ъ뿉꽌뒗 PFPS瑜 媛吏 뿬꽦쓣 긽쑝濡 MKT 쟻슜뿉 뵲瑜 븳 떎由 뒪荑쇳듃 떆 븯吏 洹 솢꽦룄쓽 蹂솕瑜 솗씤븯쑝굹, PFPS쓽 썝씤씠 릺뒗 븯吏 洹쇱쑁쓽 룞썝 떆媛꾩쓣 鍮꾧탳븯怨 臾대쫷 諛붽묑援쎌쓬怨 愿젴맂 븯吏 洹쇱쑁쓽 洹쇳솢꽦룄 蹂솕뿉 빐 議곗궗븯吏 븡븯떎16. 뵲씪꽌 븳 떎由 뒪荑쇳듃 룞븞 MKT 쟻슜 쑀臾댁뿉 뵲瑜 臾대쫷 諛붽묑援쎌쓬怨 愿젴 엳뒗 洹쇱쑁쓽 솢꽦룄瑜 솗씤븷 븘슂媛 엳쓣 寃껋쑝濡 깮媛곷맂떎.

뵲씪꽌, 蹂 뿰援ъ쓽 紐⑹쟻 븳 떎由 뒪荑쇳듃 룞븞 MKT 쟻슜씠 븯吏 洹 솢꽦룄 븞履 臾대쫷 蹂쐞 諛 뿁뜦愿젅 紐⑥쓬 媛곷룄뿉 誘몄튂뒗 쁺뼢쓣 솗씤븯뒗 寃껋씠떎.

뿰援 諛⑸쾿

1. 뿰援 긽

蹂 뿰援ъ쓽 긽옄뒗 븯吏 愿젴맂 뒪룷痢 솢룞뿉 李몄뿬룄媛 넂 留19꽭 씠긽 29꽭 誘몃쭔 궓옄 븰깮쑝濡, 蹂 뿰援ъ뿉 李몄뿬븯湲 쟾 6媛쒖썡 씠궡뿉 븯吏쓽 닔닠 씠젰씠 뾾怨 泥숈텛 吏덊솚 蹂묐젰, 떊寃쏀븰쟻 삉뒗 젙삎쇅怨쇱쟻 吏덊솚씠 뾾뒗 긽쓣 紐⑥쭛븯쑝硫, 뿁뜦씠, 臾대쫷 삉뒗 諛쒕ぉ뿉 넻利앹씠 굹굹뒗 긽 젣쇅븯떎18. 蹂 뿰援ъ젅李⑤뒗 遺寃쎈븰援먯쓽 깮紐낆쑄由ъ쐞썝쉶濡쒕꽣 듅씤쓣 諛쏆븯怨(No. 1041386-202212-HR-90-01), 蹂 뿰援ъ쓽 紐⑹쟻怨 젅李 諛 諛⑸쾿뿉 빐 긽꽭븳 꽕紐낆쓣 뱾 썑 꽌硫대룞쓽꽌瑜 옉꽦븳 20紐낆씠 옄諛쒖쟻쑝濡 李몄뿬븯떎. 뿰援щ긽옄쓽 씤援ы넻怨꾩쟻 듅꽦 Table 1怨 媛숇떎.

Table 1 . Characteristics of participants

CharacteristicData
No. of participants20
Age (yr)24.35±3.21
Height (cm)175.35±3.85
Weight (kg)74.30±7.71
Dominant limb
Right20 (100)
Left0 (0)

Values are presented as number only, mean±standard deviation, or frequency (percentage).



2. 뿰援 젅李 諛 諛⑸쾿

紐⑤뱺 痢≪젙 룞씪븳 떎뿕떎뿉꽌 吏꾪뻾릺뿀쑝硫, 긽옄뒗 紐몄뿉 遺숇뒗 諛섎컮吏瑜 엯怨 留⑤컻씤 긽깭濡 떎뿕뿉 李몄뿬븯떎. 痢≪젙 슦꽭痢(dominant) 떎由щ줈 吏꾪뻾븯쑝硫, 슦꽭痢 떎由щ뒗 異뺢뎄怨듭쓣 李⑤뒗 뜲 궗슜븷 떎由щ 吏덈Ц븯뿬 寃곗젙븯떎1. 씠썑 슫룞븰 諛 洹 솢꽦룄 옄猷뚮 닔吏묓븯湲 쐞빐 룞씪븳 寃궗옄媛 긽옄쓽 슦꽭痢 떎由ъ뿉 諛섏궗 留덉빱 쟾洹뱀쓣 遺李⑺븳 썑, 븰뒿 슚怨(learning effect)瑜 젣嫄고븯湲 쐞빐 MKT 쟻슜怨 鍮 뀒씠븨(non-taping)쓽 닚꽌뒗 젣鍮꾨퐨湲곕 넻빐 臾댁옉쐞濡 젙븯떎19. 떎뿕 쟾 긽옄뒗 븳 떎由 뒪荑쇳듃 룞옉뿉 씡닕빐吏湲 쐞빐 3–5쉶쓽 뿰뒿쓣 吏꾪뻾븳 썑 뀒씠븨 쟻슜 쑀臾댁뿉 뵲씪 븳 떎由 뒪荑쇳듃瑜 媛 3쉶 닔뻾븯룄濡 븯쑝硫, 븳 떎由 뒪荑쇳듃 떆룄 媛 1遺꾧컙 쑕떇떆媛꾩쓣 젣怨듯븯떎20,21. 紐⑤뱺 痢≪젙 諛붾떏뿉 誘몃━ 몴떆빐몦 룞씪븳 쐞移섏뿉꽌 吏꾪뻾븯떎.

1) 븳 떎由 뒪荑쇳듃

븯吏 洹 솢꽦룄 븞履 臾대쫷 蹂쐞(medial knee displacement)瑜 遺꾩꽍븯湲 쐞빐 븳 떎由 뒪荑쇳듃瑜 떎떆븯떎. 븳 떎由 뒪荑쇳듃瑜 痢≪젙븯湲곗뿉 븵꽌 뼇諛쒖쓣 11옄媛 릺寃 怨⑤컲 꼫鍮꾨줈 꽌룄濡 븳 썑 泥댁쨷쓣 吏吏븯吏 븡뒗 떎由ъ륫쓽 뿁뜦愿젅쓣 45°, 臾대쫷愿젅쓣 90° 븵履쎌쑝濡 援쏀옒 맂(flexion) 옄꽭瑜 쑀吏븯룄濡 븯쑝硫, 痢≪젙 룞븞 뙏쓣 媛뒾 븵뿉꽌 援먯감븯룄濡 븯떎(Fig. 1)20. 븳 떎由 뒪荑쇳듃뒗 遺꾨떦 60 鍮꾪듃濡 꽕젙맂 硫뷀듃濡쒕냸쓣 궗슜븯뿬 媛곴컖 2珥 룞븞 렪떖꽦 닔異뺤쓣 넻빐 臾대쫷愿젅 60° 援쏀옒 踰붿쐞源뚯 궡젮媛 60° 援쏀옒 踰붿쐞뿉꽌 2珥 룞븞 벑泥숈꽦 닔異뺤쓣 쑀吏븳 썑 떎떆 2珥 룞븞 룞떖꽦 닔異뺤쓣 넻빐 떆옉 옄꽭濡 룎븘삤뒗 닚꽌濡 슫룞쓣 떎떆븯떎22. 긽옄媛 洹좏삎쓣 엪嫄곕굹, 泥댁쨷쓣 吏吏븯吏 븡뒗 떎由ъ쓽 쐞移섍 삱諛붾Ⅴ吏 븡嫄곕굹 삉뒗 룞옉씠 뜙而κ굅由щ뒗(jurky)寃쎌슦, 뿰냽쟻씠吏 븡쓣 寃쎌슦뿉뒗 옱痢≪젙븯떎23.

Fig. 1. Single leg squat: Mulligan knee taping (A) and non-taping (B).

臾대쫷 援쏀옒 諛 븳 떎由 뒪荑쇳듃 源딆씠瑜 寃곗젙븯湲 쐞빐 媛곷룄怨(goniometer)瑜 궗슜븯쑝硫, 媛곷룄怨꾩쓽 異뺤쓣 꽇떎由щ펷쓽 媛履쎌쐞愿젅쑖湲(lateral epicondyle) 쐞뿉 쐞移섏떆궓 썑, 怨좎젙뙏(stationary arm) 媛履쎈났궗(lateral malleolus)뿉, 吏곸엫뙏(movable arm) 꽇떎由щ펷쓽 겙룎湲(greater trochanter)뿉 젙젹븯떎21. 씠썑, 媛 긽옄쓽 븳 떎由 뒪荑쇳듃 떆 臾대쫷 援쏀옒 60°媛 릺뒗 源딆씠瑜 젙쓽븯湲 쐞빐 뼇뙏濡 洹좏삎쓣 쑀吏븷 닔 엳쓣 젙룄濡 踰쎌쓣 吏吏븯룄濡 븳 썑 븳 떎由 뒪荑쇳듃瑜 떎떆븯怨, 寃궗옄媛 媛곷룄怨꾨 궗슜븯뿬 60°瑜 痢≪젙븯떎. 긽옄媛 臾대쫷 援닿끝 60°瑜 븣 닔 엳룄濡 긽옄쓽 뮘뿉 넂씠 議곗젅씠 媛뒫븳 諛쏆묠瑜 꽕移섑븯떎20.

2) 2李⑥썝 쁺긽 遺꾩꽍

븳 떎由 뒪荑쇳듃 떆 븞履 臾대쫷 蹂쐞 뿁뜦愿젅 紐⑥쓬 媛곷룄瑜 遺꾩꽍븯湲 쐞빐 븳 떎由 뒪荑쇳듃 닔뻾 吏젏뿉꽌 쟾諛 2 m 嫄곕━뿉 60 cm 넂씠濡 移대찓씪瑜 꽕移섑븯쑝硫24, 痢≪젙 쟾 紐⑤뱺 긽옄쓽 뼇履 쐞븵뿁뜦堉덇떆(anterior superior iliac spine), 臾대쫷堉 以묒븰, 諛쒕ぉ愿젅 以묒븰뿉 諛섏궗 留덉빱瑜 遺李⑺븯떎(Fig. 2)25. 븞履 臾대쫷 蹂쐞뒗 臾대쫷堉 以묒븰씠 븳 떎由щ줈 꽌엳뒗 珥덇린 쐞移섏뿉꽌遺꽣 벑泥숈꽦 닔異 룞븞 理쒕 븞履 蹂쐞媛 굹굹뒗 쐞移섎줈 젙쓽븯怨26, 뿁뜦愿젅 紐⑥쓬 媛곷룄뒗 쐞븵뿁뜦堉덇떆뿉꽌 吏硫닿낵 닔吏곸씤 꽑怨 쐞븵뿁뜦堉덇떆뿉꽌 臾대쫷堉 以묒븰쓣 뿰寃고븳 꽑쓽 궗엲媛곸쑝濡 젙쓽븯쑝硫9, 紐⑤뱺 슫룞븰쟻 옄猷뚮뒗 痢≪젙 쟾 誘몃━ 媛 긽옄뿉 留욊쾶 꽕젙븳 臾대쫷 援쏀옒 60° 떆젏뿉꽌 遺꾩꽍븯떎(Fig. 3).

Fig. 2. Lower limb marker set.
Fig. 3. Single leg sqat initial position (A), knee displacment (B), and hip adduction angle (C).

3) 洹 솢꽦룄

븳 떎由 뒪荑쇳듃 떆 겙蹂쇨린洹, 以묎컙蹂쇨린洹, 꽇떎由ш렐留됯릿옣洹(tensor fasciae latae) 諛 湲대え쓬洹(adductor longus)쓽 솢꽦룄瑜 몴硫 洹쇱쟾룄 옣鍮(mini DTS; Noraxon Inc.)瑜 궗슜븯뿬 닔吏묓븯怨, Noraxon MR3 3.14 냼봽듃썾뼱瑜 씠슜븯뿬 닔吏묐맂 옄猷뚮 泥섎━븯떎. 쟾洹 遺李 쟾뿉 몴硫 洹 솢꽦룄 떊샇뿉 븳 뵾遺 빆쓣 理쒖냼솕븯湲 쐞빐 쟾洹 遺李 遺쐞瑜 硫대룄븯쑝硫, 씠썑 븣肄붿삱 넑쑝濡 떐븘궡뿀떎. 븣肄붿삱씠 留덈Ⅸ 썑뿉 Ag/AgCI 옱吏덉쓽 1쉶슜 몴硫댁쟾洹뱀쓣 쟾洹 궗씠뿉 2 cm 媛꾧꺽쓣 몢怨 洹쇱꽟쑀 룊뻾븳 諛⑺뼢쑝濡 遺李⑺븯떎. 겙蹂쇨린洹쇱쓽 쟾洹 遺李 遺쐞뒗 몢 踰덉㎏ 뿁移섎펷(sacrum)쓽 媛떆룎湲(spinous process) 꽇떎由щ펷쓽 겙룎湲곕 媛곸꽑쑝濡 씠뿀쓣 븣 젅諛 吏젏씠硫, 以묎컙蹂쇨린洹쇱쓽 寃쎌슦 뿁뜦堉덈뒫꽑(iliac crest)怨 꽇떎由щ펷쓽 겙룎湲 궗씠 嫄곕━쓽 1/3 吏젏, 꽇떎由ш렐留됯릿옣洹쇱쓽 寃쎌슦 쐞븵뿁뜦堉덇떆뿉꽌 2 cm 븘옒 洹몃━怨 빟媛 媛履 吏젏, 湲대え쓬洹쇱쓽 寃쎌슦 몢뜦寃고빀(pubic sym-physis)怨 紐⑥쓬洹쇨껐젅(adductor tubercle) 궗씠 嫄곕━쓽 紐몄そ 1/3 븵븞履 뿀踰낆뿉 遺李⑺븯떎8,27,28. 씠썑 媛 븯吏 洹쇱쑁뿉 븳 理쒕 닔쓽쟻 벑泥숈꽦 洹쇱닔異(maximal voluntary isometric contraction)쓣 痢≪젙븯떎(Fig. 4). 겙蹂쇨린洹쇱쓽 寃쎌슦 긽옄瑜 뿇뱶由 옄꽭뿉꽌 臾대쫷쓣 90°濡 援쏀엳룄濡 븳 썑, 뿀踰낆 뮘履쎌쓣 걟쑝濡 怨좎젙븯뿬 뿁뜦愿젅 룄(extension) 諛⑺뼢쑝濡 理쒕 닔異뺥븷 닔 엳룄濡 븯떎28. 以묎컙蹂쇨린洹쇨낵 꽇떎由ш렐留됯릿옣洹쇱 痢≪젙븷 떎由ш 쐞履쎌쑝濡 뼢븯룄濡 쁿쑝濡 늻슫 옄꽭(side lying position)뿉꽌 痢≪젙븯쑝硫, 以묎컙蹂쇨린洹쇱쓽 寃쎌슦 痢≪젙븷 븯吏쓽 뿁뜦愿젅쓣 빟 35° 踰뚮┝븯怨 빟媛 룄 諛 媛履쎈룎由쇰맂 쐞移섎 걟쑝濡 怨좎젙븯뿬 뿁뜦愿젅 踰뚮┝ 諛⑺뼢쑝濡 理쒕 닔異뺥븷 닔 엳룄濡 븯怨, 꽇떎由ш렐留됯릿옣洹쇱쓽 寃쎌슦 痢≪젙븷 븯吏쓽 뿁뜦愿젅쓣 45° 援쏀옒 諛 30° 踰뚮┝맂 쐞移섎 걟쑝濡 怨좎젙븯뿬 뿁뜦愿젅 踰뚮┝ 諛⑺뼢쑝濡 理쒕 닔異뺥븷 닔 엳룄濡 븯떎28,29. 湲대え쓬洹쇱쓽 寃쎌슦 긽옄瑜 諛붾줈 늻슫 옄꽭(supine position)뿉꽌 臾대쫷怨 臾대쫷 궗씠뿉 쐞移섑븳 20 cm 몢猿섏쓽 臾쇱껜뿉 빐 뿁뜦愿젅 紐⑥쓬 諛⑺뼢쑝濡 理쒕 닔異뺥븷 닔 엳룄濡 븯떎30. 理쒕 닔쓽쟻 벑泥숈꽦 洹쇱닔異뺤 5珥덇컙 3쉶 닔뻾븯쑝硫, 痢≪젙 媛 쑕떇떆媛 60珥덈 젣怨듯븯떎20,28-30. 紐⑤뱺 洹 솢꽦룄 옄猷뚮뒗 븳 떎由 뒪荑쇳듃瑜 닔뻾븯뒗 룞븞 臾대쫷愿젅씠 2珥덇컙 60° 援쏀옒 踰붿쐞源뚯 궡젮媛뒗 렪떖꽦 닔異 援ш컙怨, 60° 援쏀옒 踰붿쐞뿉꽌 2珥덇컙 쑀吏븯뒗 벑泥숈꽦 닔異 援ш컙, 洹몃━怨 떎떆 2珥덇컙 떆옉 옄꽭濡 룎븘삤뒗 룞떖꽦 닔異 援ш컙뿉꽌 닔吏묓븳 썑 遺꾩꽍븯떎22. 닔吏묐맂 洹 솢꽦룄 옄猷뚮뒗 band pass filter 10–390 Hz瑜 궗슜븯뿬 븘꽣留 諛 젣怨깊룊洹좎젣怨깃렐(root mean square)瑜 궗슜븯뿬 룊솢솕(smoothing)븯쑝硫, 3쉶 닔뻾븯뿬 닔吏묓븳 옄猷뚯쓽 룊洹좉컪쓣 궛異쒗븯怨 理쒕 닔쓽쟻 벑泥숈꽦 洹쇱닔異뺤뿉 빐 몴以솕븯떎23.

Fig. 4. Maximal voluntary isometric contraction. Gluteus maximu (A), gluteus medius (B), tensor fascia late (C), and adductor longus (D).

4) 뀒씠븨 湲곕쾿

諛섏궗 留덉빱 諛 쟾洹 遺李⑹쓣 셿猷뚰븳 썑뿉 룞씪븳 寃궗옄媛 紐⑤뱺 긽옄뿉寃 뀒씠븨쓣 쟻슜븯怨, 뀒씠븨쓣 쟻슜븯湲 쟾 뀒씠븨 쟻슜 遺쐞瑜 븣肄붿삱 넑쑝濡 源⑤걮씠 떐븯떎31. MKT뒗 긽옄媛 뿁뜦愿젅怨 臾대쫷愿젅씠 븞履쎈룎由 릺怨 臾대쫷愿젅씠 20° 援쏀옒 릺룄濡 꽑 긽깭뿉꽌 鍮 깂꽦 뀒씠봽瑜 궗슜븯뿬 醫낆븘由щ펷癒몃━(fibula head)뿉꽌 떆옉븯뿬 젙媛뺣펷嫄곗튇硫(tuberosity of tibia) 븘옒, 븞履 臾대쫷愿젅꽑(medial knee joint line)怨 삤湲덈(popliteal space)瑜 넻怨쇳븯뿬 꽇떎由щ펷쓽 븵履쎄퉴吏 쟻슜븯떎(Fig. 5)15.

Fig. 5. The Mulligan knee taping technique.

3. 옄猷 遺꾩꽍

蹂 뿰援ъ뿉꽌 뼸 紐⑤뱺 옄猷뚮뒗 IBM SPSS Statistics version 23 for Windows (IBM Corp.)瑜 씠슜븯뿬 湲곗닠넻怨꾨웾쓣 궛異쒗븯怨, 紐⑤뱺 옄猷뚯뿉 빐 Shapiro-Wilk쓽 젙洹쒖꽦 寃젙쓣 떎떆븳 寃곌낵뿉 뵲씪 紐⑥닔寃젙 諛⑸쾿 삉뒗 鍮꾨え닔寃젙 諛⑸쾿쓣 궗슜븯떎. 뀒씠븨 쑀臾댁뿉 뵲瑜 븯吏 洹 솢꽦룄瑜 鍮꾧탳븯湲 쐞빐 젙洹쒖꽦쓣 留뚯”븯뒗 蹂씤뿉 빐꽌뒗 쓳몴蹂 t-寃젙(paired t-test)쓣, 젙洹쒖꽦쓣 留뚯”븯吏 븡뒗 蹂씤뿉 빐꽌뒗 Wilcoxon쓽 遺샇닚쐞 寃젙(signed rank test)쓣 궗슜븯쑝硫, 븞履 臾대쫷 蹂쐞 諛 뿁뜦愿젅 紐⑥쓬 媛곷룄瑜 鍮꾧탳븯湲 쐞빐 쓳몴蹂 t-寃젙쓣 궗슜븯떎. 紐⑤뱺 쑀쓽닔以 α=0.05濡 꽕젙븯떎.

寃 怨

1. 뀒씠븨 쟻슜뿉 뿁뜦愿젅 洹 솢꽦룄 李⑥씠

븳 떎由 뒪荑쇳듃 룞븞 MKT 쟻슜뿉 뵲瑜 뿁뜦愿젅 洹 솢꽦룄 李⑥씠瑜 鍮꾧탳 遺꾩꽍븳 寃곌낵, 븳 떎由 뒪荑쇳듃 닔뻾 떆 렪떖꽦 닔異 援ш컙怨 벑泥숈꽦 닔異 援ш컙뿉꽌 겙蹂쇨린洹 솢꽦룄媛 MKT瑜 쟻슜븳 寃쎌슦(媛곴컖 15.65±8.89 15.60±11.19)媛 쟻슜븯吏 븡 寃쎌슦(媛곴컖 14.65±9.28 14.81±10.60)蹂대떎 쑀쓽븯寃 利앷븯떎(媛곴컖 t=3.354, p=0.001怨 t=–2.240, p=0.025). 겙蹂쇨린洹 룞떖꽦 닔異 援ш컙怨 以묎컙蹂쇨린洹, 꽇떎由ш렐留됯릿옣洹 諛 湲대え쓬洹쇱쓽 솢꽦룄뒗 紐⑤뱺 援ш컙뿉꽌 쑀쓽븳 李⑥씠媛 뾾뿀떎(p>0.05) (Table 2).

Table 2 . Differences in hip joint muscle activity and hip adduction angle with and without MKT application during single leg squat

VariableMKTNon-tapingt (p)/Z (p)
EMG (%MVIC)
Eccentric contraction
Gmax15.65±8.8914.65±9.283.354 (0.001)*†
Gmed34.39±26.6733.00±22.07−0.672 (0.502)
TFL13.90±7.5113.97±7.540.193 (0.849)
AL9.99±4.839.03±3.56−1.083 (0.279)
Isometric contraction
Gmax15.60±11.1914.81±10.60−2.240 (0.025)*†
Gmed36.55±23.7936.54±24.39−0.336 (0.737)
TFL16.24±10.4516.78±10.38−1.083 (0.279)
AL13.38±5.9612.98±4.74−0.870 (0.395)
Concentric contraction
Gmax24.93±12.9424.99±14.67−0.373 (0.709)
Gmed42.10±21.6243.18±24.20−0.709 (0.478)
TFL11.88±6.5012.00±6.99−0.336 (0.737)
AL8.12±3.508.15±3.030.129 (0.898)
Kinematic
Knee displacement (cm)1.30±1.531.12±1.66−1.071 (0.298)
Hip adduction angle (°)11.37±3.3211.01±3.58−1.443 (0.165)

Values are presented as mean±standard deviation.

MKT: Mulligan knee taping, EMG: electromyography, Gmax: gluteus maximus muscle, Gmed: gluteus medius muscle, TFL: tensor fascia latae muscle, AL: adductor longus muscle.

*p<0.05, non-parametric statistics.



2. 뀒씠븨 쟻슜뿉 뵲瑜 븞履 臾대쫷 蹂쐞 뿁뜦愿젅 紐⑥쓬 媛곷룄 李⑥씠

븳 떎由 뒪荑쇳듃 룞븞 MKT 쟻슜뿉 뵲瑜 븞履 臾대쫷 蹂쐞 뿁뜦愿젅 紐⑥쓬 媛곷룄 李⑥씠瑜 鍮꾧탳 遺꾩꽍븳 寃곌낵, 븳 떎由 뒪荑쇳듃 닔뻾 떆 븞履 臾대쫷 蹂쐞 뿁뜦愿젅 紐⑥쓬 媛곷룄뒗 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎(p>0.05) (Table 2).

怨 李

蹂 뿰援щ뒗 嫄닿컯븳 20 궓꽦쓣 긽쑝濡 븳 떎由 뒪荑쇳듃 룞븞 MKT 쟻슜씠 뿁뜦愿젅 洹 솢꽦룄 븞履 臾대쫷 蹂쐞 諛 뿁뜦愿젅 紐⑥쓬 媛곷룄뿉 誘몄튂뒗 쁺뼢쓣 솗씤븯怨좎옄 븯떎. 洹 寃곌낵, 븳 떎由 뒪荑쇳듃 닔뻾 떆 겙蹂쇨린洹쇱쓽 솢꽦룄뒗 MKT瑜 쟻슜븳 寃쎌슦媛 쟻슜븯吏 븡 寃쎌슦蹂대떎 뜑 넂寃 굹굹 MKT 쟻슜쑝濡 겙蹂쇨린洹쇱쓽 솢꽦룄媛 利앷븳 寃껋쓣 솗씤뻽吏留, 떎瑜 뿁뜦愿젅 洹쇱쑁쓽 솢꽦룄 븞履 臾대쫷 蹂쐞 諛 뿁뜦愿젅 紐⑥쓬 媛곷룄뒗 뀒씠븨 쟻슜뿉 뵲瑜 李⑥씠媛 굹굹吏 븡븯떎.

MKT瑜 쟻슜븳 썑 븳 떎由 뒪荑쇳듃瑜 닔뻾븳 寃쎌슦媛 쟻슜븯吏 븡 寃쎌슦蹂대떎 겙蹂쇨린洹쇱쓽 솢꽦룄뒗 쑀쓽븯寃 利앷븯吏留 떎瑜 洹쇱쑁 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎. 씠寃껋 븳 떎由 뒪荑쇳듃 룞븞쓽 슫룞븰쟻 吏곸엫 蹂솕濡 꽕紐낇븷 닔 엳떎. 蹂 뿰援ъ뿉꽌뒗 븳 떎由 뒪荑쇳듃瑜 븯뒗 룞븞 뿁뜦愿젅 쉶쟾뿉 븳 吏곸엫쓽 蹂솕瑜 젙솗븯寃 痢≪젙븯吏 븡븯吏留, 꽑뻾뿰援ъ뿉꽌 븳 떎由 뒪荑쇳듃瑜 닔뻾븯뒗 룞븞 MKT瑜 쟻슜븳 寃쎌슦媛 쟻슜븯吏 븡 寃쎌슦蹂대떎 뿁뜦愿젅쓽 븞履쎈룎由쇱씠 媛먯냼뻽떎怨 蹂닿퀬븯떎14. 씠뿉 뵲씪 븳 떎由 뒪荑쇳듃瑜 닔뻾븯뒗 룞븞 뿁뜦愿젅 븞履쎈룎由쇱뿉 빐 겙蹂쇨린洹쇱쓽 렪떖꽦쑝濡 議곗젅븯뒗 뒫젰씠 뼢긽릺뼱 렪떖꽦 닔異 援ш컙뿉꽌 뜑 겙 솢꽦솕瑜 쑀룄븳 寃껋쑝濡 깮媛곷맂떎. 삉븳 븳 떎由 뒪荑쇳듃 留덉留 踰붿쐞뿉 룄떖븳 긽깭뿉꽌 뿁뜦愿젅 룎由 吏곸엫쓣 議곗젅븯湲 쐞븳 겙蹂쇨린洹쇱쓽 벑泥숈꽦 닔異뺤뿉 븳 슂援щ룄媛 넂븯쓣 寃껋쑝濡 깮媛곷릺硫, MKT 쟻슜쑝濡 씤빐 뿁뜦愿젅 룎由 吏곸엫쓣 議곗젅븯뒗 뒫젰씠 뼢긽릺뼱 벑泥숈꽦 닔異 援ш컙뿉꽌룄 뜑 겙 솢꽦솕瑜 쑀룄븳 寃껋쑝濡 뙋떒맂떎.

以묎컙蹂쇨린洹쇱쓣 룷븿븳 꽇떎由ш렐留됯릿옣洹쇨낵 湲대え쓬洹쇱쓽 솢꽦룄 李⑥씠媛 굹굹吏 븡 씠쑀룄 슫룞븰쟻 吏곸엫怨 愿젴씠 엳떎怨 깮媛곷맂떎. MKT뒗 궗꽑쑝濡 遺李⑺븯湲 븣臾몄뿉, 怨쇰룄븳 븞履쎈룎由 吏곸엫쓣 媛먯냼떆궗 닔 엳吏留 愿긽硫댁뿉꽌쓽 吏곸엫 議곗젅븷 닔 뾾떎. 꽑뻾뿰援ъ뿉꽌룄 MKT瑜 쟻슜븳 寃쎌슦 쟻슜븯吏 븡 寃쎌슦뿉꽌 뿁뜦愿젅 紐⑥쓬怨 踰뚮┝쓽 吏곸엫뿉꽌뒗 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎怨 蹂닿퀬븯怨16,17, 蹂 뿰援ъ뿉꽌룄 뿁뜦愿젅 紐⑥쓬 媛곷룄뿉꽌 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎. 뵲씪꽌, 뿁뜦愿젅 踰뚮┝쓽 二쇰룞洹쇱씤 以묎컙蹂쇨린洹쇨낵 꽇떎由ш렐留됯릿옣洹, 洹몃━怨 뿁뜦愿젅 紐⑥쓬쓽 二쇰룞洹쇱씤 湲대え쓬洹쇱쓽 솢꽦룄뿉 쑀쓽븳 李⑥씠媛 굹굹吏 븡 寃껋쑝濡 깮媛곷맂떎. Kim 벑12 궎꽕떆삤 뀒씠븨쓣 쟻슜븯怨 슫룞쓣 떎떆븯쓣 븣 꽇떎由щ 洹쇱쑁쓽 솢꽦룄媛 뼢긽릺뿀떎怨 蹂닿퀬븯쑝굹, 蹂 뿰援ъ뿉꽌뒗 뀒씠븨 쟻슜뿉 뵲瑜 겙蹂쇨린洹쇱쓣 젣쇅븳 굹癒몄 洹쇱쑁쓽 솢꽦룄쓽 蹂솕媛 愿李곕릺吏 븡븯떎. 蹂 뿰援 寃곌낵媛 꽑뻾뿰援ъ 떎瑜닿쾶 굹궃 寃껋 뀒씠븨 쟻슜 썑 6二쇨컙쓽 슫룞쓣 떎떆븳 꽑뻾뿰援 諛⑸쾿怨 뀒씠븨 쟻슜 썑 利됯컖쟻씤 슚怨쇰 솗씤븳 蹂 뿰援ъ쓽 諛⑸쾿쟻씤 李⑥씠濡 씤븳 寃껋씠씪怨 깮媛곷맂떎.

븳 떎由 뒪荑쇳듃 룞븞 MKT瑜 쟻슜븳 寃쎌슦 쟻슜븯吏 븡 寃쎌슦뿉꽌 뿁뜦愿젅 紐⑥쓬 媛곷룄 븞履 臾대쫷 蹂쐞뒗 쑀쓽븳 李⑥씠媛 굹굹吏 븡븯떎. 뿁뜦愿젅 紐⑥쓬 媛곷룄뒗 愿긽硫댁뿉꽌쓽 젙젹쓣 굹궡硫, 以묎컙蹂쇨린洹쇱쓽 렪떖꽦 옉슜쑝濡 議곗젅맂떎. 蹂 뿰援 寃곌낵뿉꽌 뿁뜦愿젅 紐⑥쓬 媛곷룄媛 MKT 쟻슜 썑 0.3° 利앷븯뒗 寃쏀뼢씠 굹궗吏留, 넻怨꾩쟻쑝濡 쑀쓽븳 李⑥씠뒗 뾾뿀떎. 꽑뻾뿰援 寃곌낵뿉꽌 븬젰 깮泥대릺癒뱀엫쓣 씠슜븳 븳 떎由 꽌湲(single leg standing) 슫룞 룞븞 以묎컙蹂쇨린洹쇱쓽 솢꽦룄 뿁뜦愿젅 紐⑥쓬 媛곷룄媛 媛곴컖 5.68%MVIC, 2.58° 留뚰겮 利앷븳 寃껋뿉 鍮꾩텛뼱 蹂 븣32, 蹂 뿰援 寃곌낵뿉꽌 뿁뜦愿젅 紐⑥쓬 媛곷룄媛 0.3° 利앷븳 寃껋 留ㅼ슦 옉 蹂솕濡 以묎컙蹂쇨린洹쇱쓽 솢꽦룄뿉 쁺뼢쓣 二쇱 紐삵븯怨, 씠윭븳 寃곌낵媛 뿁뜦愿젅 紐⑥쓬 媛곷룄쓽 蹂솕媛 굹굹吏 븡 씠쑀씪怨 깮媛곷맂떎. 삉븳, 臾대쫷 븞履 蹂쐞뒗 룞쟻씤 룞옉 룞븞 臾대쫷쓽 諛붽묑援쎌쓬 젙젹쓣 굹궡뒗 삉 떎瑜 吏몴씠吏留33, 蹂 뿰援ъ뿉꽌뒗 嫄닿컯븳 20 궓꽦쓣 긽쑝濡 븯뿬 臾대쫷 븞履 蹂쐞媛 1 cm濡 겕吏 븡븯湲 븣臾몄뿉 MKT 쟻슜 썑뿉룄 쑀쓽븳 李⑥씠媛 굹굹吏 븡 寃껋쑝濡 깮媛곷맂떎.

MKT뒗 븳 떎由 뒪荑쇳듃 룞븞 怨쇰룄븳 뿁뜦愿젅 븞履쎈룎由쇱쓣 媛먯냼떆耳 臾대쫷 諛붽묑援쎌쓬뿉 슚怨쇱쟻씤 諛⑸쾿쑝濡 젣븞릺뿀떎. 븯吏留 븳 떎由 뒪荑쇳듃瑜 븯뒗 룞븞 MKT 쟻슜뿉 뵲瑜 臾대쫷 諛붽묑援쎌쓬怨 愿젴 엳뒗 뿁뜦愿젅쓽 洹 솢꽦룄 蹂솕뿉 빐꽌 議곗궗븳 뿰援щ뒗 뾾뿀떎. 蹂 뿰援ъ뿉꽌뒗 븳 떎由 뒪荑쇳듃 룞븞 MKT 쟻슜 뿬遺뿉 뵲瑜 臾대쫷 諛붽묑援쎌쓬怨 愿젴 엳뒗 뿁뜦愿젅쓽 洹 솢꽦룄瑜 솗씤븳 泥 뿰援ъ씠硫, 洹 寃곌낵 겙蹂쇨린洹쇱쓽 洹 솢꽦룄媛 쑀쓽븯寃 利앷븯떎. 鍮 깂꽦 뀒씠븨 媛寃⑹씠 졃븯怨 엫긽怨 뒪룷痢 쁽옣뿉꽌룄 쟻슜씠 돺湲 븣臾몄뿉 븳 떎由 뒪荑쇳듃 룞옉씠 룷븿맂 썕젴쓣 닔뻾븷 븣 MKT 쟻슜쓣 넻븳 겙蹂쇨린洹쇱쓽 솢꽦룄 利앷 씠뿉 뵲瑜 썕젴쓽 슚怨 利앷룄 湲곕븷 닔 엳쓣 寃껋쑝濡 깮媛곷맂떎. 洹몃옒꽌 븳 떎由 뒪荑쇳듃瑜 븯뒗 룞븞 겙蹂쇨린洹쇱쓽 洹 솢꽦룄瑜 利앷떆궎湲 쐞빐꽌 MKT 쟻슜쓣 沅뚯옣븳떎. 洹몃윭굹 엫긽뿉꽌 씠 媛숈 뀒씠븨쓣 쟻슜븯湲 쟾뿉 쟻슜 긽옄쓽 뵾遺 븣젅瑜닿린 쑀臾 諛 諛섏쓳쓣 솗씤븯뿬, 뀒씠븨 쟻슜쑝濡 씤븳 遺옉슜씠 諛쒖깮븯吏 븡룄濡 二쇱쓽媛 븘슂븯떎.

蹂 뿰援ъ뿉뒗 紐 媛吏 젣븳젏씠 엳떎. 泥 踰덉㎏ 臾대쫷 諛붽묑援쎌쓬 뿁뜦愿젅 븞履쎈룎由, 紐⑥쓬 諛 젙媛뺣펷쓽 媛履쎈룎由쇱씠 寃고빀릺뼱 굹궗吏留 蹂 뿰援ъ뿉꽌뒗 뿁뜦愿젅 븞履쎈룎由쇰쭔 媛먯냼떆궎뒗 諛⑸쾿留 쟻슜븯떎. 洹몃옒꽌 異뷀썑 뿰援ъ뿉꽌뒗 뿁뜦愿젅 븞履쎈룎由쇰퓧留 븘땲씪 紐⑥쓬怨 젙媛뺣펷쓽 媛履쎈룎由쇱쓣 븿猿 議곗젅븷 닔 엳뒗 뀒씠븨 쟻슜 썑 슫룞븰怨 븯吏 洹쇱쑁쓽 솢꽦룄 蹂솕瑜 솗씤븯뒗 뿰援ш 븘슂븷 寃껋씠떎. 몢 踰덉㎏ 븳 떎由 뒪荑쇳듃 룞븞 뿁뜦愿젅 紐⑥쓬 媛곷룄瑜 솗씤븯怨, 臾대쫷 諛붽묑援쎌쓬怨 愿젴 엳뒗 臾대쫷 븞履 蹂쐞瑜 遺꾩꽍븯뿬 젙웾솕븯쑝굹, 臾대쫷 諛붽묑援쎌쓬쓣 痢≪젙븯吏 븡븯떎. 異뷀썑 뿰援ъ뿉꽌뒗 븳 떎由 뒪荑쇳듃 룞븞 臾대쫷 諛붽묑援쎌쓬쓣 솗씤븯뒗 뿰援ш 븘슂븯떎怨 깮媛곷맂떎. 꽭 踰덉㎏뒗 뿰援 긽옄뱾씠 嫄닿컯븳 20 궓꽦쑝濡, 紐⑤뱺 긽옄濡 씪諛섑솕븷 닔 뾾떎. 뵲씪꽌 異뷀썑 뿰援ъ뿉꽌뒗 臾대쫷 넻利앹씠 엳뒗 긽옄 샊 룞쟻 臾대쫷 諛붽묑援쎌쓬씠 엳뒗 긽옄瑜 긽쑝濡 議곗궗媛 븘슂븷 寃껋씠씪 깮媛곷맂떎. 留덉留됱쑝濡 뀒씠븨 쐞빟 슚怨쇨 굹궇 닔 엳吏留 씠寃껋뿉 빐꽌 鍮꾧탳븯吏 븡븯떎. 異뷀썑 뿰援ъ뿉꽌뒗 뵆씪떆蹂 뀒씠븨쓣 쟻슜븯뿬 옞옱쟻씤 쐞빟 슚怨쇰 솗씤븯뒗 뿰援ш 븘슂븷 寃껋씠씪怨 깮媛곹븳떎.

寃곕줎쑝濡, 蹂 뿰援ъ뿉꽌 MKT 쟻슜씠 룞쟻씤 룞옉쓣 닔뻾븯뒗 룞븞 뿁뜦愿젅 媛履쎈룎由쇱쓽 二쇰룞洹쇱씤 겙蹂쇨린洹쇱쓽 솢꽦룄 뼢긽뿉 湲곗뿬븯뒗 寃껋쑝濡 솗씤븯쑝硫, 뿁뜦愿젅 紐⑥쓬 媛곷룄瑜 媛쒖꽑븯湲 쐞빐꽌 異붽쟻씤 뀒씠븨쓽 슚怨 삉븳 怨좊젮릺뼱빞 븷 寃껋씠떎.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Supervision, Validation: all authors. Inve-stigation, Resources: KYJ, TGK. Visualization: KYJ. Writing–original draft: KYJ, TGK. Writing–review & editing: SYK, KYJ.

References
  1. Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med 2003;31:449-56.
    Pubmed CrossRef
  2. Mann RA, Moran GT, Dougherty SE. Comparative electromyography of the lower extremity in jogging, running, and sprinting. Am J Sports Med 1986;14:501-10.
    Pubmed CrossRef
  3. Homan KJ, Norcross MF, Goerger BM, Prentice WE, Blackburn JT. The influence of hip strength on gluteal activity and lower extremity kinematics. J Electromyogr Kinesiol 2013;23:411-5.
    Pubmed CrossRef
  4. Distefano LJ, Blackburn JT, Marshall SW, Padua DA. Gluteal muscle activation during common therapeutic exercises. J Orthop Sports Phys Ther 2009;39:532-40.
    Pubmed CrossRef
  5. Ferber R, Davis IS, Hamill J, Pollard CD, McKeown KA. Kinetic variables in subjects with previous lower extremity stress fractures. Med Sci Sports Exerc 2002;34:S5.
    CrossRef
  6. Neamatallah Z, Herrington L, Jones R. An investigation into the role of gluteal muscle strength and EMG activity in controlling HIP and knee motion during landing tasks. Phys Ther Sport 2020;43:230-5.
    Pubmed CrossRef
  7. Sims KJ, Brauer SG. A rapid upward step challenges medio-lateral postural stability. Gait Posture 2000;12:217-24.
    Pubmed CrossRef
  8. Aminaka N, Pietrosimone BG, Armstrong CW, Meszaros A, Gribble PA. Patellofemoral pain syndrome alters neuromuscular control and kinetics during stair ambulation. J Electromyogr Kinesiol 2011;21:645-51.
    Pubmed CrossRef
  9. Dawson SJ, Herrington L. Improving single-legged-squat performance: comparing 2 training methods with potential implications for injury prevention. J Athl Train 2015;50:921-9.
    Pubmed KoreaMed CrossRef
  10. Palmer K, Hebron C, Williams JM. A randomised trial into the effect of an isolated hip abductor strengthening programme and a functional motor control programme on knee kinematics and hip muscle strength. BMC Musculoskelet Disord 2015;16:105.
    Pubmed KoreaMed CrossRef
  11. Sasaki S, Tsuda E, Yamamoto Y, et al. Core-muscle training and neuromuscular control of the lower limb and trunk. J Athl Train 2019;54:959-69.
    Pubmed KoreaMed CrossRef
  12. Kim HH, Kim KH. Effects of Kinesio taping with squat exercise on the muscle activity, muscle strength, muscle tension, and dynamic stability of softball players in the lower extremities: a randomized controlled study. Int J Environ Res Public Health 2021;19:276.
    Pubmed KoreaMed CrossRef
  13. Saki F, Romiani H, Ziya M, Gheidi N. The effects of gluteus Medius and tibialis anterior Kinesio taping on postural control, knee kinematics, and knee proprioception in female athletes with dynamic knee valgus. Phys Ther Sport 2022;53:84-90.
    Pubmed CrossRef
  14. Hing W, Hall T, Rivett D, Vicenzino B, Mulligan B. The Mulligan concept of manual therapy (eBook): textbook of techniques. Elsevier Health Sciences; 2014.
  15. Mulligan BR. Manual therapy: "NAGS", "SNAGS", "MWMS" etc. 5th ed. Plane View Services Ltd., distributed by Orthopedic Physical Therapy Products; 2006.
  16. Hickey A, Hopper D, Hall T, Wild CY. The effect of the Mulligan Knee taping technique on patellofemoral pain and lower limb biomechanics. Am J Sports Med 2016;44:1179-85.
    Pubmed CrossRef
  17. Mackay GJ, Stearne SM, Wild CY, et al. Mulligan knee taping using both elastic and rigid tape reduces pain and alters lower limb biomechanics in female patients with patellofemoral pain. Orthop J Sports Med 2020;8:2325967120921673.
    Pubmed KoreaMed CrossRef
  18. Diniz KM, Resende RA, Mascarenhas RO, Silva HJ, Filho RG, Mendon챌a LM. Hip passive stiffness is associated with hip kinematics during single-leg squat. J Bodyw Mov Ther 2021;28:68-74.
    Pubmed CrossRef
  19. Callaghan MJ, Selfe J, McHenry A, Oldham JA. Effects of patellar taping on knee joint proprioception in patients with patellofemoral pain syndrome. Man Ther 2008;13:192-9.
    Pubmed CrossRef
  20. Mauntel TC, Begalle RL, Cram TR, et al. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance. J Strength Cond Res 2013;27:1813-23.
    Pubmed CrossRef
  21. Jaberzadeh S, Yeo D, Zoghi M. The effect of altering knee position and squat depth on VMO:뎈L EMG ratio during squat exercises. Physiother Res Int 2016;21:164-73.
    Pubmed CrossRef
  22. Olivier B, Quinn SL, Benjamin N, Green AC, Chiu J, Wang W. Single-leg squat delicacies: the position of the nonstance limb is an important consideration. J Sport Rehabil 2019;28:318-24.
    Pubmed CrossRef
  23. Khuu A, Loverro KL, Lewis CL. Muscle activation during single-legged squat is affected by position of the nonstance limb. J Athl Train 2022;57:170-6.
    Pubmed KoreaMed CrossRef
  24. Dingenen B, Malfait B, Vanrenterghem J, Verschueren SM, Staes FF. The reliability and validity of the measurement of lateral trunk motion in two-dimensional video analysis during unipodal functional screening tests in elite female athletes. Phys Ther Sport 2014;15:117-23.
    Pubmed CrossRef
  25. Kim HS, Yoo HI, Hwang UJ, Kwon OY. Comparison of dynamic knee valgus during single-leg step down between people with and without pronated foot using two-dimensional video analysis. Phys Ther Korea 2021;28:266-72.
    CrossRef
  26. Ban R, Yang F. Preliminary study on acute effects of an intervention to increase dorsiflexion range of motion in reducing medial knee displacement. Clin Biomech (Bristol, Avon) 2022;95:105637.
    Pubmed CrossRef
  27. Cram JR, Kasman GS, Holtz J. Introduction to surface electromyography. Aspen Publishers; 1998.
  28. Selkowitz DM, Beneck GJ, Powers CM. Which exercises target the gluteal muscles while minimizing activation of the tensor fascia lata?: electromyographic assessment using fine-wire electrodes. J Orthop Sports Phys Ther 2013;43:54-64.
    Pubmed CrossRef
  29. Lee JH, Cynn HS, Kwon OY, et al. Different hip rotations influence hip abductor muscles activity during isometric side-lying hip abduction in subjects with gluteus Medius weakness. J Electromyogr Kinesiol 2014;24:318-24.
    Pubmed CrossRef
  30. Krommes K, Bandholm T, Jakobsen MD, et al. Dynamic hip adduction, abduction and abdominal exercises from the holmich groin-injury prevention program are intense enough to be considered strengthening exercises: a cross-sectional study. Int J Sports Phys Ther 2017;12:371-80.
  31. Someeh M, Norasteh AA, Daneshmandi H, Asadi A. Immediate effects of Mulligan's fibular repositioning taping on postural control in athletes with and without chronic ankle instability. Phys Ther Sport 2015;16:135-9.
    Pubmed CrossRef
  32. Kim SY, Kang MH. The influences of restricted compensatory movement on activation pattern of gluteal muscles during unilateral weight-bearing exercise. J Hum Sport Exerc 2021;16:618-26.
    CrossRef
  33. Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med 2011;39:866-73.
    Pubmed CrossRef