search for



Functional Recovery Program before and after Anterior Cruciate Ligament Reconstruction: A Current Concepts Review
Korean J Sports Med 2024;42:67-85
Published online June 1, 2024;  https://doi.org/10.5763/kjsm.2024.42.2.67
© 2024 The Korean Society of Sports Medicine.

Seung Ik Cho1, Sang Jin Yang2, Byeong Sun Park1, Doo Hwan Kong3, Jung Wook Lee4, D hong Won Lee1

1Sports Medical Center, KonKuk University Medical Center, Seoul, 2Department of Health and Exercise Management, Tongwon University, Gwangju, 3Seoul Jump Orthopaedic Surgery Clinic, Seoul, 4Sports Medical Center, Hanyang University Myongji Hospital, Ilsan, Korea
Correspondence to: Dhong Won Lee
Department of Orthopaedic Surgery, KonKuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
Tel: +82-2-2030-7937, Fax: +82-2-2030-7369, E-mail: osdoctorknee@kuh.ac.kr
Received January 29, 2024; Revised February 8, 2024; Accepted February 10, 2024.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Anterior cruciate ligament (ACL) rupture leads to weakened quadriceps muscle strength and a decline in proprioception, impairing the neuromuscular control of the lower extremities. ACL reconstruction, aimed at addressing such structural and functional instability, has become a primary treatment method for young and active patients. Consequently, there have been significant advancements in surgical techniques, resulting in improved clinical outcomes. However, achieving successful outcomes after ACL reconstruction is not solely dependent on the surgery itself; pre- and postoperative rehabilitation and management are equally crucial. A well-designed functional recovery program based on medical evidence before and after ACL reconstruction plays a vital role in restoring function to preinjury levels. The process of the functional recovery program, from presurgery to sports return, should adhere to certain principles. These principles involve prompt and accurate clinical diagnosis and patient classification after injury, systematic programs addressing joint swelling and inflammation control, reduction of arthrogenic muscle inhibition, restoration of range of motion, muscle strength recovery, and proprioception restoration. Postoperatively, it is essential to go beyond traditional methods (such as range of motion restoration and muscle strengthening) by implementing a functional recovery program that includes enhancement of proprioception and neuromuscular control system from the early stages, considering the biological healing response of the graft. This comprehensive approach is vital for achieving optimal outcomes in the recovery of function after ACL reconstruction.
Keywords : Anterior cruciate ligament, Anterior cruciate ligament reconstruction, Rehabilitation, Arthrogenic muscle inhibition, Proprioception
꽌 濡

理쒓렐 援궡뿉꽌 쟾諛⑹떗옄씤 뙆뿴 諛쒖깮씠 利앷븯怨 엳쑝硫 븯吏 넀긽 以 以묒슂 遺긽 以묒쓽 븯굹濡 愿떖쓣 諛쏄퀬 엳떎1,2. 쟾諛⑹떗옄씤 넀긽 뒪룷痢 솢룞肉 븘땲씪 씪긽쟻씤 떊泥댁쟻씤 솢룞뿉룄 젣븳쓣 二쇨퀬 궣쓽 吏덉뿉 遺젙쟻씤 쁺뼢쓣 誘몄튌 닔 엳뒗 遺긽씠떎3. 씠뒗 쟾諛⑹떗옄씤媛 뒳愿젅쓽 븞젙꽦 쑀吏 諛 怨좎쑀닔슜媛먭컖 湲곕뒫뿉 愿뿬븯怨 엳怨, 넀긽 떆 눜궗몢洹 洹쇰젰 빟솕 븿猿 怨좎쑀닔슜媛먭컖 湲곕뒫쓽 빟솕瑜 珥덈옒븯뿬 븯吏쓽 洹쇱떊寃 議곗젅 뒫젰쓣 븯븯湲 븣臾몄씠떎4. 씠윭븳 援ъ“쟻, 湲곕뒫쟻 遺덉븞젙꽦쓣 빐寃고븯湲 쐞븳 쟾諛⑹떗옄씤 옱嫄댁닠 젇怨 솢룞쟻씤 솚옄뱾뿉寃 二쇰맂 移섎즺 諛⑸쾿쑝濡 쟻슜븯怨 엳뒗뜲, 씠뿉 뵲씪 옱嫄댁닠 諛⑸쾿씠 留롮 諛쒖쟾쓣 빐솕怨 洹몄뿉 뵲瑜 엫긽 寃곌낵룄 뼢긽릺怨 엳떎5. 븯吏留 쟾諛⑹떗옄씤 옱嫄댁닠 썑 꽦怨듭쟻씤 寃곌낵瑜 뼸湲 쐞빐꽌뒗 닔닠留뚰겮씠굹 닔닠 쟾썑 옱솢 諛 愿由ш 以묒슂븳뜲, 쓽븰쟻 洹쇨굅뿉 湲곕컲븳 옒 꽕怨꾨맂 湲곕뒫 쉶蹂 봽濡쒓렇옩씠 닔닠 쟾 湲곕뒫쑝濡 쉶蹂듯븯뒗 뜲뿉 以묒슂븳 뿭븷쓣 븯湲 븣臾몄씠떎6,7.

닔닠 쟾뿉 愿젅 媛룞 踰붿쐞 슫룞, 눜궗몢洹 솢꽦솕 슫룞遺꽣 떆옉븯뿬 씪긽 깮솢뿉 遺덊렪븿씠 뾾쓣 젙룄濡 湲곕뒫쓣 쉶蹂듯븳 긽깭뿉꽌 닔닠쓣 떆뻾빐빞 븳떎8. 씪諛섏쟻쑝濡 3二 젙룄 吏굹 뿼利 諛섏쓳씠 媛씪븠 떆젏뿉 닔닠쓣 沅뚯옣븯湲 븣臾몄뿉, 씠 湲곌컙뿉 쟻洹뱀쟻쑝濡 닔닠쟻 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 쟻슜븯뒗 寃껋씠 옱嫄댁닠 썑 議곌린 뒪룷痢 솢룞 蹂듦瑜 쐞빐꽌룄 以묒슂븯떎8,9. 洹몃윭굹 븘吏곴퉴吏 닔닠 쟾 뼱뒓 젙룄쓽 鍮덈룄 諛 媛뺣룄濡 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 쟻슜빐빞 븯뒗吏뿉 빐꽌뒗 젙由쎈맂 寃껋씠 뾾떎. 옱嫄댁닠 썑 留롪쾶뒗 30%뿉꽌 40%쓽 솚옄뱾씠 젣濡 뒪룷痢 솢룞뿉 蹂듦븯吏 紐삵븳떎怨 븣젮졇 엳뒗뜲, 씠뒗 닔닠 썑 湲곕뒫 쉶蹂 봽濡쒓렇옩씠 留롮 諛쒖쟾쓣 빐솕쓬뿉룄 遺덇뎄븯怨 븘吏곴퉴吏 젙由쎈맂 봽濡쒗넗肄쒖 뾾뼱 씠뿉 븳 吏냽쟻씤 뿰援ш 븘슂븿쓣 留먰빐 以떎8. 蹂대떎 엯利앸맂 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 쟻슜븯湲 쐞빐 옱嫄댁닠 썑 씠떇臾쇱쓽 옱삁愿솕 諛 꽦닕怨 愿젴맂 깮臾쇳븰쟻 移섏쑀 媛쒕뀗쓣 옒 씠빐븯뿬빞 븳떎10. 삉븳, 怨좎쑀닔슜媛먭컖 諛 洹쇱떊寃 議곗젅 썕젴쓽 以묒옱 뒪룷痢 솢룞 蹂듦 湲곗 벑 媛쒖꽑븷 븘슂媛 엳떎.

蹂 醫낆꽕뿉꽌뒗 닔닠 쟾썑 湲곕뒫 쉶蹂듭쓣 쐞븳 슫룞 봽濡쒓렇옩뿉 븳 理쒖떊 臾명뿄뱾쓣 젙由ы븯怨, 떎젣 엫긽뿉꽌 쟻슜븯뒗 궡슜뱾쓣 媛꾩텛젮 蹂닿퀬옄 븳떎.

蹂 濡

1. 닔닠 쟾 湲곕뒫 쉶蹂 봽濡쒓렇옩

1) 닔닠 쟾 湲곕뒫 쉶蹂 봽濡쒓렇옩뿉 븳 씠빐

쟾諛⑹떗옄씤 넀긽 썑遺꽣 닔닠 쟾源뚯쓽 옱솢移섎즺뒗 닔닠 썑 湲곕뒫 쉶蹂듭뿉 以묒슂븳 뿭븷쓣 븯뒗 寃껋쑝濡 븣젮졇 엳떎. 닔닠 쟾 湲곕뒫 쉶蹂 슫룞쓽 二쇰맂 紐⑹쟻 愿젅 媛룞 踰붿쐞 쉶蹂듦낵 愿젅湲곗씤꽦 洹쇱뼲젣(arthrogenic muscle inhibition) 쁽긽 洹밸났씠떎. 삉븳, 臾대쫷 湲곕뒫 븯뿉 뵲瑜 遺덉븞媛먯뿉 븳 떖由ъ쟻씤 쉶蹂듭쓣 븯뒗 寃껋씠떎10.

쟾諛⑹떗옄씤媛 넀긽릺硫 愿젅쓽 醫낆갹 諛 넻利앹쓽 諛쒖깮, 愿젅湲곗씤꽦 洹쇱뼲젣 벑쑝濡 씤븯뿬 눜궗몢洹 洹쇰젰씠 빟솕릺怨, 洹몄뿉 뵲씪 愿젅 媛룞 踰붿쐞 젣븳 諛 鍮꾩젙긽쟻씤 蹂댄뻾씠 諛쒖깮븯寃 맂떎. 씠윭븳 넀긽 썑 蹂묒쟻 諛섏쓳뱾뿉 쓽븳 湲곕뒫 빟솕媛 닔닠 쟾뿉 빐寃곕릺吏 븡쑝硫 닔닠 썑 엫긽 寃곌낵뿉 遺젙쟻씤 쁺뼢쓣 誘몄튂寃 맂떎11. 理쒓렐 諛쒗몴맂 닔닠 쟾 눜궗몢洹 洹쇰젰 슫룞쓽 슚怨쇰 遺꾩꽍븳 泥닿퀎쟻 臾명뿄 怨좎같뿉 쓽븯硫, 닔닠 쟾 눜궗몢洹 洹쇰젰쓽 빟솕媛 닔닠 썑 2뀈吏몄쓽 궙 엫긽 寃곌낵 뿰愿씠 엳쑝硫, 닔닠 썑 吏냽릺뒗 눜궗몢洹쇱쓽 洹쇰젰 빟솕뒗 넻利, 옱遺긽, 怨④젅뿼쓽 諛쒕퀝 벑怨 愿젴씠 엳떎怨 븯떎12. 븳렪, 닔닠 쟾 洹쇰젰 쉶蹂듭뿉 以묒젏쓣 몦 슫룞 봽濡쒓렇옩쓣 떆뻾븳 솚옄뱾씠 닔닠 썑 洹쇰젰怨 엫긽 寃곌낵뿉꽌 쑀쓽븯寃 醫뗭 寃곌낵瑜 蹂댁씤떎怨 븯떎. 닔닠 쟾 옱솢 봽濡쒓렇옩 쟻슜쓽 寃곌낵瑜 蹂닿린 쐞빐 닔닠 쟾 옱솢 봽濡쒓렇옩쓣 쟻슜븯吏 븡 Multicenter Orthopaedic Outcomes Network (MOON) cohort Delaware-Oslo ACL Cohort (DOC)瑜 鍮꾧탳븯쓣 븣, DOC뿉꽌 닔닠 썑 2뀈吏 International Knee Documentation Committee (IKDC) 二쇨쟻 젏닔 Knee Injury and Osteoarthritis Outcome Score (KOOS)쓽 쑀쓽븳 뼢긽쓣 蹂댁떎怨 븯떎9. DOC뿉꽌 뒪룷痢 솢룞 蹂듦쑉씠 72%뜕 諛섎㈃뿉, MOON cohort뿉꽌뒗 63%떎.

닔닠 쟾 湲곕뒫 쉶蹂 봽濡쒓렇옩뿉꽌 以묒젏쟻쑝濡 怨좊젮빐빞 븷 6媛吏 슂냼뱾 솚옄쓽 쟻젅븳 遺꾨쪟, 뒳愿젅쓽 醫낆갹 諛 뿼利 긽깭, 愿젅 媛룞 踰붿쐞, 눜궗몢洹 洹쇰젰, 怨좎쑀닔슜媛먭컖怨 洹쇱떊寃 議곗젅 뒫젰, 닔닠 쟾 湲곕뒫 쉶蹂 봽濡쒓렇옩 湲곌컙 벑씠떎13-15. 蹂 옄뱾 Table 1怨 媛숈 봽濡쒓렇옩쓣 떆湲곕퀎濡 쟻슜븯怨 엳떎.

Table 1 . Summary of functional recovery program before anterior cruciate ligament reconstruction

Functional recovery programPhase 1, 0닋3 wkPhase 2, 4닋6 wkPhase 3, extended period
Range of motion
0°−120°O
0°−130°O
Weight bearing
Tolerable full weight bearingO
Modalities
Neuromuscular electrical stimulationOOO
Blood flow restrictionOOO
Pain/swelling control (cryotherapy)OOO
Muscle strengthO
Prone quadriceps (Q)-Set, short arc Q-setO
Straight leg raisingO
Hip abduction-adductionO
Gait retrainingOO
Active knee extension (90°−0°)OO
Knee extension machine (90°−30°)OO
Hamstring curl (0°−90°)OO
Squat, Lunge (0°−90°)OO
Single leg squatOO
Core training
Proprioception
Weight shifting, single leg balanceO
Cup walking, tandem stanceO
Balance board, rocker, roller board, BOSU ballOO
PerturbationOO
Balance exerciseagainstvalgus forceOO
Training for arthrogenic muscle inhibition
Isometric hamstring fatigue exerciseOO
Active terminal knee extension exerciseO


2) 쟾諛⑹떗옄씤 뙆뿴 썑 솚옄 遺꾨쪟

쟾諛⑹떗옄씤 넀긽 썑 諛섏쓳 媛쒖씤뿉 뵲씪 떎瑜닿쾶 諛섏쓳븷 닔 엳떎. 1999뀈 Eastlack 벑16 쟾諛⑹떗옄씤 뙆뿴 썑 룞쟻 遺덉븞젙꽦씠 뾾씠 씠쟾 닔以쓽 솢룞쓣 옱媛쒗븯뒗 궗엺쓣 ‘copers’씪 븯怨, 옱솢 移섎즺뿉룄 遺덇뎄븯怨 룞쟻 遺덉븞젙꽦 利앹꽭媛 吏냽릺뒗 궗엺쓣 ‘non-copers’씪뒗 슜뼱瑜 궗슜븯뿬 遺꾨쪟븯떎. 씠 愿젴븯뿬 Fitzgerald 벑17 쟾諛⑹떗옄씤 뙆뿴 썑 珥덇린뿉 닔닠쟻 移섎즺瑜 吏뿰떆궗 닔 엳뒗 옞옱쟻 coper瑜 떇蹂꾪븯湲 쐞븳 湲곕뒫쟻 뒪겕由щ떇 寃궗 諛⑸쾿쓣 媛쒕컻븯뿬 솚옄 遺꾨쪟 諛⑸쾿쓣 젣떆븯떎. 뒪겕由щ떇 寃궗 諛⑸쾿뱾濡 솚痢 鍮 timed 6-m hop 寃궗, 씪긽 깮솢 湲곕뒫 꽕臾 젏닔(Knee Outcome Survey-Activities of Daily Living Scale score), 뒳愿젅 湲곕뒫쓽 global rating 젏닔, giving way 諛쒖깮 鍮덈룄 벑뿉꽌 紐⑤뱺 湲곗 異⑹” 떆 옞옱쟻 coper씪怨 븯떎. 뵲씪꽌 넀긽 썑 솚옄 遺꾨쪟瑜 넻빐 옞옱쟻 coper뿉 빐떦븯뒗 솚옄뒗 湲곕뒫 닔뻾 뒫젰쓽 뼢긽쓣 紐⑺몴濡 洹쇰젰쓽 쑀吏, 遺덉븞젙븳 솚寃쎌뿉꽌쓽 洹좏삎 뒫젰 뼢긽 벑쓣 쐞븳 썕젴쓣 媛뺤“빐꽌 떎떆빐빞 븳떎. 諛섎濡 non-coper뿉 빐떦릺뒗 솚옄뱾 넻利 諛 遺醫 媛먯냼, 愿젅 슫룞 踰붿쐞 쉶蹂, 洹 쐞異 諛⑹, 洹쇱떊寃 議곗젅 뒫젰쓽 쉶蹂듭쓣 쐞븳 썕젴쓣 媛뺤“븯뿬 떎떆빐빞 븳떎18.

二쇱쓽븷 젏, 諛섏썡 뿰怨⑦뙋쓽 遺덉븞젙꽦 뙆뿴, 떎諛쒖꽦 씤 넀긽, 뿰怨 넀긽 벑씠 엳뼱 議곌린 닔닠씠 븘슂븳 寃쎌슦뿉뒗 copers non-copers瑜 遺꾨쪟븯湲곕낫떎뒗 넀긽맂 遺쐞媛 뜑 븙솕릺吏 븡룄濡 湲곕뒫 쉶蹂 슫룞 媛뺣룄瑜 議곗젅빐 二쇱뼱빞 븳떎뒗 寃껋씠떎.

3) 愿젅 遺醫 諛 뿼利 議곗젅

湲됱꽦 쟾諛⑹떗옄씤 뙆뿴 썑 삁愿젅利앹쓽 諛쒖깮쑝濡 遺醫 諛 넻利앹씠 굹굹怨 寃곌낵쟻쑝濡 뿼利 諛섏쓳뿉 쓽빐 눜궗몢洹 洹쇱떊寃쎌쓽 뼲젣 諛섏쓳씠 씪뼱굹硫댁꽌 洹 쐞異 諛 愿젅 媛룞 踰붿쐞쓽 냼떎씠 諛쒖깮븯寃 릺硫, 理쒖쥌쟻쑝濡쒕뒗 鍮꾩젙긽쟻씤 蹂댄뻾쑝濡쒓퉴吏 씠뼱吏寃 맂떎19. 遺醫 諛 넻利앹씠 吏냽맆닔濡 臾대쫷 湲곕뒫쓽 빟솕媛 媛냽솕맆 닔 엳쑝誘濡 議곌린뿉 셿솕릺룄濡 븯뿬빞 븳떎20. 泥 踰덉㎏濡 옱넀긽쓣 留됯린 쐞븳 쟻젅븳 蹂댄샇媛 븘슂븯떎. 쟾諛⑹떗옄씤 蹂댁“湲곕 씠슜븯뿬 異붽쟻씤 넀긽쓣 삁諛⑺븯뒗 寃껋씠 룄쓣 以 닔 엳떎. 븯吏留 뒳愿젅쓽 援ъ텞쓣 留됯린 쐞빐 옣湲곌컙 怨좎젙븯뒗 寃껋 醫뗭 븡쑝硫, 蹂댄샇맂 긽깭뿉꽌 젙긽쟻씤 蹂댄뻾쓣 븷 닔 엳룄濡 援먯쑁븯뿬빞 븳떎. 洹몃윭굹 蹂댄샇뒗 븯릺, 쟻젅븳 遺븯(optimal loading)瑜 쟻슜븯뒗 썕젴 븘슂븯떎(Fig. 1). 쟻젅븳 遺븯뒗 뒳愿젅 뿰怨⑥쓽 빟솕 諛 洹쇱떊寃 議곗젅 뒫젰쓽 빟솕瑜 以꾩씠硫 뿰怨 궗 옉슜쓣 썝솢엳 븯뒗 뜲 룄쓣 以 닔 엳떎. 몢 踰덉㎏뒗 깋슂踰뺢낵 븬諛뺤쓣 떆뻾븯뒗 寃껋씠떎(Fig. 2)20. 꽭 踰덉㎏뒗 븯吏 嫄곗긽씠떎. 늻썙 엳쓣 븣뿉뒗 븯吏瑜 떖옣 넂씠蹂대떎 넂뿬 븯吏 遺醫낆쓣 媛먯냼떆궎怨, 議곗쭅쓽 留먯큹 삁瑜섏쓽 쓲由꾩쓣 珥됱쭊븳떎.

Fig. 1. Weight shifting.
Fig. 2. Ice and compression.

4) 愿젅 媛룞 踰붿쐞 쉶蹂

愿젅 媛룞 踰붿쐞 젣븳 쟾諛⑹떗옄씤 넀긽 썑 쓷븯寃 諛쒖깮븷 닔 엳뒗 뒳愿젅 湲곕뒫 냼떎씠硫 셿쟾 떊쟾 젣븳씠 4%뿉꽌 35%쓽 鍮덈룄濡 蹂닿퀬릺怨 엳떎(Fig. 3)21. Shelbourne Gray22쓽 뿰援ъ뿉 쓽븯硫 臾대쫷 떊쟾 踰붿쐞媛 5° 寃고븤릺뒗 寃껊쭔쑝濡 愿젅 遺븯 利앷, 뒳媛-눜 愿젅쓽 넻利, 셿쟾 떊쟾젰 빟솕 벑쑝濡 씤븯뿬 鍮꾩젙긽쟻씤 蹂댄뻾씠 諛쒖깮븯怨 怨꾨떒쓣 삤瑜대궡由ш굅굹 븠븯떎 씪뼱꽌湲곗 媛숈 씪긽 깮솢 벑뿉 븙쁺뼢쓣 誘몄튌 닔 엳떎怨 븯떎. 愿젅 媛룞 踰붿쐞媛 젣븳릺뼱 엳뒗 긽깭뿉꽌 議곌린뿉 닔닠쓣 떆뻾븯硫 愿젅 꽟쑀利 諛쒖깮瑜좎씠 22% 利앷븿씠 蹂닿퀬맂 諛 엳뒗뜲, 씠뒗 愿젅 媛룞 踰붿쐞 젣븳쓣 뜑슧 븙솕떆궓떎23. 닔닠 쟾 옣湲곌컙 怨좎젙쓣 븯硫 뒳愿젅 궡 諛섑쓷 議곗쭅쓽 삎꽦쑝濡 씤빐 愿젅 援ъ텞, 넻利 諛 遺醫낆쑝濡 씤븳 愿젅湲곗씤꽦 洹쇱뼲젣 쁽긽 벑씠 諛쒖깮븯뒗뜲, 씠뒗 눜궗몢洹(듅엳, 궡痢↔킅洹)쓽 쐞異뺤쓣 븙솕떆궓떎24,25. 뵲씪꽌 쟾諛⑹떗옄씤 넀긽 썑 諛붾줈 넻利 諛 遺醫낆쓣 議곗젅븯怨 議곌린뿉 愿젅 踰붿쐞 슫룞쓣 떆뻾븯뿬 諛섑쓷 議곗쭅 삎꽦쓣 삁諛⑺븯湲 쐞빐 끂젰빐빞 븳떎. 愿젅 踰붿쐞 슫룞쓽 紐⑺몴뒗 넀긽 썑 2–3二 씠궡뿉 0°–120°쓽 슫룞 踰붿쐞瑜 쉶蹂듯븯뒗 寃껋씠떎. 닔닠 쟾 愿젅 媛룞 踰붿쐞 쉶蹂듭쓣 쐞빐 슦꽑쟻쑝濡 셿쟾 떊쟾쓣 뼸뼱빞 븯뒗뜲, 슚怨쇱쟻씤 슫룞 諛⑸쾿쑝濡 hanging weight 슫룞怨 뒫룞쟻 떊쟾슫룞(terminal knee extension) 슫룞씠 엳떎(Fig. 4). 뒳愿젅 援닿끝 젣븳쓣 빐寃고븯湲 쐞빐꽌뒗 닔嫄댁쓣 씠슜븳 뒳愿젅 뒳씪씠뵫 슫룞怨 踰쎌쓣 씠슜븳 뒳씪씠뵫 슫룞씠 異붿쿇릺怨 엳떎(Fig. 5).

Fig. 3. Extension deficit.
Fig. 4. Exercises for knee extension. (A) Hanging weight exercise. (B) Active terminal knee extension exercise.
Fig. 5. Exercises for knee flexion. (A) Knee sliding exercise with a towel. (B) Wall sliding exercise.

5) 洹쇰젰 쉶蹂

쟾諛⑹떗옄씤媛 뙆뿴릺硫 二쇰줈 눜궗몢洹쇱쓽 洹 쐞異뺤씠 諛쒖깮븯뒗뜲, 蹂닿퀬맂 諛붿뿉 쓽븯硫 5%뿉꽌 40% 踰붿쐞쓽 눜궗몢洹 洹쇰젰 寃곗넀씠 씪뼱굹뒗 寃껋쑝濡 븣젮졇 엳떎26. 理쒓렐 二쇱슂 썝씤쑝濡 愿젅湲곗씤꽦 洹쇱뼲젣 씠濡좎씠 留롮 愿떖쓣 諛쏄퀬 엳떎. Rice McNair27뿉 쓽빐 븣젮吏 愿젅湲곗씤꽦 洹쇱뼲젣쓽 湲곗쟾, 愿젅 궡 援ъ“臾쇱쓽 넀긽 諛 궪異쒖븸쓽 利앷濡 씤븳 愿젅 궡 븬젰쓽 利앷 諛 넻利앹씠 援ъ떖꽦 떊寃쎌쓽 쟾떖 寃쎈줈뿉 鍮꾩젙긽쟻씤 蹂솕瑜 씪쑝궓떎뒗 寃껋씠떎. 뒳愿젅쓽 蹂솕맂 援ъ떖꽦 떊寃쎌쓽 쟾떖 泥숈닔 궡 諛섏궗 寃쎈줈쓽 씎遺꾩꽦쓣 鍮꾩젙긽쟻쑝濡 蹂솕떆궓떎. 鍮꾩젙긽쟻씤 옄洹뱀쓣 諛쏆 泥숈텛 떊寃쎈줈뿉꽌뒗 뇤 꽱꽣濡 媛뒗 떊샇 쟾떖 泥닿퀎룄 蹂솕떆궓떎. 뇤 꽱꽣뿉꽌뒗 젙긽쟻쑝濡 슫룞쓣 議곗젅븯뒗 쁺뿭쓣 뼲젣븯怨, 떎瑜 遺쐞쓽 솢꽦쓣 利앷븳떎. 寃곌낵쟻쑝濡 뇤 꽱꽣뿉꽌 궡젮삤뒗 슫룞 議곗젅 떊寃 쟾떖 泥닿퀎媛 蹂솕븯硫댁꽌 눜궗몢洹쇱쓽 슫룞 떊寃 솢꽦룄뒗 뼥뼱吏꾨떎. 씠윭븳 쁽긽쑝濡 씤븯뿬 눜궗몢洹쇱쓽 뒫룞쟻 닔異뺤 뼲젣릺뼱 떊쟾 媛먯냼븯怨, 썑냽 泥숈텛 諛섏궗濡 뻹뒪듃留 怨쇳솢꽦솕뿉 쓽빐 떊쟾 젣븳씠 븙솕맂떎(Fig. 6)28.

Fig. 6. Mechanisms of arthrogenic muscle inhibition.

愿젅湲곗씤꽦 洹쇱뼲젣 쁽긽쓣 빐寃고븯湲 쐞븳 슚怨쇱쟻씤 湲곕뒫 쉶蹂 슫룞 諛⑸쾿뿉뒗 뿬윭 媛吏媛 엳떎. 泥 踰덉㎏뒗 怨쇳솢꽦솕맂 뻹뒪듃留 洹쇱쑁쓽 뵾濡쒕룄瑜 넂뿬 뻹뒪듃留 洹쇱쑁쓽 솢꽦쓣 궙異붾뒗 諛⑸쾿씠떎. 蹂듭쐞뿉꽌 뻹뒪듃留 洹쇱쑁쓣 벑泥숈꽦 빆쑝濡 뵾濡쒗븯寃 븯뿬 泥숈닔 怨쇰컲궗利앹쓽 쁺뼢쓣 以꾩뿬 愿젅 援ъ텞쓣 빐냼븯怨, 눜궗몢洹 닔異 슫룞쓣 諛섎났븯뿬 눜 뵾吏 떊寃 媛냼꽦뿉 泥섑븿쑝濡쒖뜥 愿젅 湲곕뒫쓽 쉶蹂듭쓣 룙뒗 諛⑹떇씠떎. 씠윭븳 諛섎났쟻씤 옄洹뱀쓣 넻빐 깉뼲젣 湲곗쟾쓣 씠슜븯뿬 슫룞 씎遺꾩꽦쓽 蹂솕瑜 씪쑝궗 닔 엳怨, 옄諛쒖쟻씤 눜궗몢洹쇱쓽 솢꽦솕瑜 뼢긽븷 닔 엳떎(Fig. 7A). 몢 踰덉㎏뒗 蹂듭쐞뿉꽌 諛쒓씫쑝濡 吏硫댁쓣 늻瑜대㈃꽌 뒳愿젅쓣 떊쟾븯뒗 룞옉쓣 넻빐 눜궗몢洹쇱뿉 옒쓣 二쇨쾶 븿쑝濡쒖뜥 뻹뒪듃留곸쓽 媛쒖엯쓣 理쒖냼솕(reciprocal inhibition)븯뿬 닚닔븯寃 눜궗몢洹 洹쇱닔異뺤쓽 솢꽦쓣 쑀룄븯뒗 寃껋씠떎(Fig. 7B). 꽭 踰덉㎏뒗 洹쇱떊寃 옄洹(Neuromuscular electrical stimulation, NMES)쓣 넻빐 눜궗몢洹 洹쇳솢꽦쓣 룄二쇰뒗 寃껋씠떎(Fig. 7C)29.

Fig. 7. Interventions for arthrogenic muscle inhibition. (A) Isometric hamstring fatigue exercise. (B) Prone quadricep (Q)-setting exercise. (C) Q-muscle activation with neuromuscular electrical stimulation.

닔닠 쟾 洹쇰젰 쉶蹂듭쓣 쐞븳 泥닿퀎쟻 슫룞 봽濡쒓렇옩쓣 젣떆븳 떎닔쓽 뿰援щ 醫낇빀빐蹂대㈃, 씪諛섏쟻쑝濡 떕엺 궗뒳(closed kinetic chain) 슫룞怨 뿴由 궗뒳(open kinetic chain) 슫룞 삎깭瑜 蹂듯빀쟻쑝濡 쟻슜븳 옱솢슫룞 봽濡쒓렇옩쓣 젣떆븯怨 엳떎. 삉븳 寃쎄낏쓽 쟾諛 쟾쐞뿉 븳 뒪듃젅뒪媛 쟻 媛곷룄쓽 踰붿쐞뿉꽌 蹂삎쟻쑝濡 슫룞쓣 쟻슜븷 寃껋쓣 沅뚯옣븯怨 엳떎30. 떕엺 궗뒳 슫룞쓽 몴쟻씤 삁뒗 뒪荑쇳듃(squat) 슫룞씤뜲, 뒳愿젅 援닿끝 媛곷룄 0°뿉꽌 45° 踰붿쐞뿉꽌 떆뻾븯뒗 誘몃땲 뒪荑쇳듃濡 떆뻾븳떎(Fig. 8A). 뿴由 궗뒳 슫룞쓽 몴쟻씤 삁뒗 젅洹 씡뒪뀗뀡 슫룞쑝濡, 뒳愿젅 媛룞 踰붿쐞 90°뿉꽌 30° 踰붿쐞뿉꽌 떆뻾븳떎(Fig. 8B)31-34.

Fig. 8. Closed kinetic chain (CKC) and open kinetic chain (OKC) exercises for muscle strength recovery. (A) CKC exercise: mini squat (0° to 45° knee flexion). (B) OKC exercise: leg extension (90° to 30° knee extension).

6) 洹쇱떊寃 議곗젅 뒫젰 쉶蹂

쟾諛⑹떗옄씤 넀긽 뒳愿젅쓽 怨좎쑀닔슜媛먭컖쓽 븯瑜 쑀諛쒗븯뿬 鍮꾩젙긽쟻씤 洹쇱쑁 솢꽦솕 뙣꽩 諛 룞쟻씤 愿젅 븞젙꽦쓽 媛먯냼 벑怨 媛숈 蹂솕瑜 씪쑝궓떎35. 蹂묒쟻씤 뒳愿젅 씠셿 愿젅쓽 吏곸엫怨 쐞移섎 媛먯븯뒗 뒫젰쓽 媛먯냼瑜 씪쑝궎硫, 씠윭븳 湲곌퀎쟻 遺덉븞젙꽦씠 湲곕뒫쟻 遺덉븞젙쓣 쑀諛쒗븯뿬 寃곌뎅뿉뒗 洹쇱떊寃 議곗젅 뒫젰쓽 媛먯냼濡쒓퉴吏 씠뼱吏뒗 寃껋씠떎. 怨좎쑀닔슜媛먭컖쓽 븯뒗 湲곌퀎쟻 닔슜泥(mechanoreceptors)쓽 援ъ떖꽦 떊寃쎄꼍濡쒖쓽 솢꽦 媛먯냼, 愿젅쓽 뿼利앷낵 넻利앹쑝濡 씤븳 蹂듯빀쟻씤 媛먭컖 寃곗넀 벑쑝濡 씤빐 굹궃떎. 씠 愿젴맂 뿰援ъ뿉 쓽븯硫, 怨좎쑀닔슜媛먭컖쓽 븯뒗 눜궗몢洹쇰젰 쉶蹂, 씪긽 솢룞 닔以, 쟾泥댁쟻씤 洹좏삎 뒫젰 벑뿉 遺젙쟻씤 쁺뼢쓣 誘몄튂硫, 異붽쟻씤 넀긽쓽 쐞뿕쓣 利앷떆궗 닔 엳떎怨 븳떎36. 뵲씪꽌 愿젅쓽 湲곌퀎쟻 닔슜泥대 옄洹뱁븯뒗 쟻젅븳 怨좎쑀닔슜媛먭컖 쉶蹂 슫룞 슦由 紐몄쓽 슫룞 떊寃 議곗젅 뒫젰쓣 뼢긽븯뿬 옄꽭굹 愿젅쓽 븞젙꽦쓣 쉶蹂듯븯뒗 뜲 以묒슂븯寃 옉슜븯寃 맂떎. Emami Meibodi 벑37쓽 뿰援ъ뿉꽌뒗 쟾諛⑹떗옄씤 넀긽 썑 珥덇린 옱솢 湲곌컙뿉 떆媛곸쟻씤 뵾뱶諛깃낵 븿猿 洹좏삎 옱솢슫룞쓣 떆뻾븯쓣 븣 떎뼇븳 쐞移섏뿉꽌쓽 洹좏삎 뒫젰怨 怨좎쑀닔슜媛먭컖씠 쑀쓽븯寃 뼢긽뻽떎怨 蹂닿퀬븯떎. 닔닠 쟾 洹쇱떊寃 議곗젅 뒫젰 쉶蹂 슫룞 봽濡쒓렇옩쑝濡쒕뒗 젙긽쟻씤 蹂댄뻾쓣 쐞븳 룞쟻씤 옄꽭 븞젙꽦 쉶蹂듭쓣 쐞븳 洹좏삎 썕젴怨 異붽쟻씤 넀긽쓣 留됯린쐞븳 knee valgus control 썕젴 벑씠 엳떎(Fig. 9)38,39.

Fig. 9. Neuromuscular training for proprioception. (A) Single leg stance on an unstable surface. (B) Balance exercise against valgus force.

7) 닔닠 쟾 湲곕뒫 쉶蹂 슫룞 湲곌컙

理쒓렐 Carter 벑40쓽 쟾諛⑹떗옄씤 닔닠 쟾 옱솢 슫룞 봽濡쒓렇옩쓽 슚怨쇱뿉 븳 泥닿퀎쟻 怨좎같뿉 뵲瑜대㈃ 옄뱾留덈떎 沅뚯옣븯뒗 湲곌컙 떎瑜대떎. Hartigan 벑41 3二 룞븞 10쉶, Shaarani 벑42 6二 룞븞 留ㅼ< 4쉶, Kim 벑43 4二 룞븞 留ㅼ< 3쉶 벑쑝濡 젣떆븯떎. Hanada 벑44쓽 뿰援ъ뿉꽌뒗 옱嫄댁닠 理쒕 6二 쟾뿉 湲곕뒫 쉶蹂 슫룞쓣 떆옉븯뒗 寃껋씠 닔닠 썑 鍮좊Ⅸ 뒪룷痢 蹂듦瑜 珥됱쭊븯뒗 뜲 룄쓣 以 닔 엳떎怨 븯떎. 씠泥섎읆 닔닠 쟾 湲곕뒫 슫룞 湲곌컙 몴以솕릺뼱 엳吏 븡怨 3–6二쇰줈 떎뼇븯寃 젣떆릺硫, 理쒖냼 珥 10쉶 씠긽 떆뻾쓣 沅뚯옣븯怨 엳떎. 遺遺꾩쓽 뿰援ъ뿉꽌뒗 媛먮룆 븯뿉 슫룞쓣 吏꾪뻾븯뒗 寃껋쓣 沅뚯옣븯怨 엳떎.

2. 닔닠 썑 湲곕뒫 쉶蹂 봽濡쒓렇옩

쟾諛⑹떗옄씤 옱嫄댁닠 썑 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 꽕怨꾪븷 븣 以묒슂븯寃 怨좊젮븷 遺遺꾩 씠떇臾쇱쓽 移섏쑀씠떎. 옱嫄댁닠 썑 珥덇린 6–12二 룞븞 씠떇臾쇱쓽 議곗쭅 愿댁궗 씠떇臾-怨⑦꽣꼸 移섏쑀 怨쇱젙씠 씪뼱굹뒗뜲, 씠 怨쇱젙뿉꽌 怨쇰룄븳 씤옣 遺븯(tensile load)媛 떎由щ㈃ 씠떇臾쇱쓽 怨좎젙씠 뒓뒯빐吏嫄곕굹 씠떇臾 옄泥닿 뒛뼱궇 닔 엳떎45. 뵲씪꽌 珥덇린뿉뒗 씠떇臾쇱뿉 媛빐吏뒗 씤옣 遺븯뿉 二쇱쓽븯뿬 씠떇臾쇱쓽 씠셿씠 利앷븯뒗 寃껋쓣 諛⑹빐빞 븳떎46. 씠뿉 븳 씠빐뒗 珥덇린 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 꽕怨꾪븷 븣 媛 슂냼뱾쓣 諛곕텇븯뒗 뜲뿉 룄쓣 以떎. 洹몃윭굹,씠뒗 떒닚븯寃 깮臾쇳븰쟻씤 移섏쑀 怨쇱젙쓣 湲곗쑝濡 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 吏꾪뻾븳떎뒗 쓽誘멸 븘땲씪, 怨좎쑀닔슜媛먭컖怨 洹쇱떊寃 議곗젅씠씪뒗 媛쒕뀗쓣 以묒떖쑝濡 怨쇳븰쟻쑝濡 怨좎븞맂 愿젅 슫룞 踰붿쐞, 洹쇰젰, 湲곕뒫쟻 吏곸엫 벑 媛 슂냼뱾쓣 諛곗튂븯뒗 룷愿꾩쟻씠怨 쟻洹뱀쟻씤 봽濡쒓렇옩쓣 꽕怨꾪빐빞 븳떎뒗 쓽誘몄씠떎. 닔닠 썑 湲곕뒫 쉶蹂 봽濡쒓렇옩씠 뿭궗쟻쑝濡 뼱뼸寃 蹂솕빐 솕怨, 愿젅 踰붿쐞 슫룞, 泥댁쨷 遺븯 슫룞, 洹쇰젰 슫룞, 怨좎쑀닔슜媛먭컖 슫룞 벑쓣 뼱뼡 떇쑝濡 援ъ꽦븷吏뿉 빐 븣븘蹂닿퀬옄 븳떎.

1) 닔닠 썑 湲곕뒫 쉶蹂 移섎즺쓽 쓲由

쟾諛⑹떗옄씤 닔닠 썑 湲곕뒫 쉶蹂 移섎즺쓽 以묒슂 紐⑺몴뒗 뒳愿젅쓽 遺醫, 넻利, 뿼利 벑쓣 理쒖냼솕븯怨 셿쟾븳 愿젅 媛룞 踰붿쐞 쉶蹂, 洹쇰젰 쉶蹂, 怨좎쑀닔슜媛먭컖쓽 쉶蹂 벑쓣 넻빐 遺긽 쟾쓽 뾽臾 솢룞 삉뒗 뒪룷痢 솢룞 닔以쑝濡 蹂듦븯뒗 寃껋씠떎. 씠윭븳 紐⑺몴瑜 씠猷④린 쐞븳 湲곕뒫 쉶蹂 슫룞 봽濡쒓렇옩쓣 援ъ꽦븯젮硫 씠떇嫄댁쓽 깮뿭븰 諛 깮臾쇳븰, 옱嫄댁닠 諛⑸쾿(씠떇嫄댁쓽 怨좎젙 諛⑸쾿 벑 룷븿) 벑뿉 븳 씠빐媛 븘슂븯떎10.

1980뀈 珥덈컲源뚯 옱솢 씠떇臾쇱쓽 蹂댄샇瑜 쐞빐 6–8二쇨퉴吏뒗 鍮꾩껜以 遺븯, 怨좎젙 벑쓣 떆뻾븯吏留, 1980뀈 以묐컲遺꽣 닔닠 諛⑸쾿 諛 씠떇臾 怨좎젙 湲곌뎄쓽 諛쒖쟾怨 븿猿 옣湲곌컙 鍮꾩껜以 遺븯 諛 愿젅 怨좎젙뿉꽌 利됯컖쟻씤 닔룞 愿젅 媛룞 踰붿쐞 슫룞怨 議곌린 泥댁쨷 遺븯濡 쓲由꾩씠 諛붾뚯뿀떎47-49. 씠 뜑遺덉뼱 1990뀈 Shelbourne怨 Nitz50쓽 뿰援ъ뿉꽌 媛냽솕 옱솢쓣 냼媛쒗븯硫댁꽌 쟾諛⑹떗옄씤 닔닠 썑 옱솢 諛⑹떇씠 겕寃 蹂솕븯떎. 씠윭븳 쓲由꾩뿉 異붽濡 닔닠 썑 湲곌퀎쟻씤 뒪듃젅뒪 븘옒뿉 씠떇臾쇱쓽 깮臾쇳븰쟻 꽦닕씠 뼱뼸寃 씠猷⑥뼱吏뒗吏뿉 븳 씠빐룄 꼻媛寃 릺뿀떎51. 洹몄뿉 뵲씪 1990뀈쓽 떒닚 媛냽솕 옱솢씠 븘땶 씠떇臾쇱쓽 떎뼇븳 移섏쑀 떒怨꾨 怨좊젮븯뿬 湲곕뒫쟻 遺덉븞젙꽦 諛 移섏쑀 떎뙣瑜 뵾븯湲 쐞븳 泥닿퀎쟻 옱솢 봽濡쒓렇옩씠 媛쒕컻릺뿀떎.

2019뀈 諛쒗몴맂 泥닿퀎쟻 臾명뿄 怨좎같뿉 쓽븯硫, 議곌린뿉 愿젅 媛룞 踰붿쐞 슫룞쓣 떆옉븯怨 洹쇱떊寃 쟾湲 옄洹뱀쓣 룷븿빐빞 븳떎뒗 寃껋쓣 빀移섎맂 쓽寃ъ쑝濡 蹂닿퀬 엳떎52. 삉븳, 떕엺 궗뒳 諛 뿴由 궗뒳 슫룞, 怨좎쑀닔슜媛먭컖쓣 쉶蹂듯븯湲 쐞븳 洹쇱떊寃 議곗젅 썕젴 벑쓣 媛 떒怨꾨퀎濡 넻빀쟻쑝濡 쟻슜븯뿬빞 븯硫, 눜궗몢洹 媛뺥솕瑜 쐞븳 珥덇린 뿴由 궗뒳 슫룞 90°뿉꽌 45° 媛곷룄濡 젣븳 썑 젏吏꾩쟻쑝濡 떊쟾 媛곷룄瑜 삱젮빞 븳떎怨 븯怨 엳떎52.

쟾諛⑹떗옄씤 옱嫄댁닠 썑 븞쟾븯怨 셿쟾븳 湲곕뒫 쉶蹂듭쓣 쐞빐꽌뒗 닔닠踰뺢낵 씠떇臾쇱쓽 移섏쑀 湲곌컙뿉 빐 異⑸텇븯寃 씠빐븯怨, 씠瑜 怨좊젮븯뿬 愿젅 媛룞 踰붿쐞, 泥댁쨷 遺븯 슫룞, 洹쇰젰 슫룞, 怨좎쑀닔슜媛먭컖 諛 洹쇱떊寃 議곗젅 쉶蹂 슫룞 벑쓣 넻빀쟻쑝濡 援ъ꽦븯릺, 떆湲곗뿉 留욊쾶 쟻젅븯寃 援ъ꽦븯뿬 吏꾪뻾빐빞 븳떎.

2) 愿젅 媛룞 踰붿쐞 쉶蹂 슫룞

쟾諛⑹떗옄씤 닔닠 썑 셿쟾 떊쟾 벑 愿젅 媛룞 踰붿쐞쓽 쉶蹂듭 닔닠 썑 3媛쒖썡 씠쟾 珥덇린 옱솢 떒怨꾩뿉꽌 以묒슂븳 뿭븷쓣 븯硫, 留뚯”뒪읇寃 떖꽦릺吏 紐삵븳떎硫 썑湲 옱솢뿉 遺젙쟻씤 쁺뼢쓣 誘몄튌 닔 엳떎53. 옱嫄댁닠 썑 議곌린 愿젅 媛룞 踰붿쐞 슫룞쓽 슚怨쇰뒗 넻利 諛 遺醫낆쓽 媛먯냼, 愿젅쓽 援ъ텞怨 愿젅 꽟쑀솕 삁諛, 愿젅 뿰怨⑥쓽 쁺뼇 怨듦툒 諛 쑀吏, 씠떇臾쇱쓽 移섏쑀 벑쑝濡 븣젮졇 엳떎54. 떎닔쓽 뿰援ъ뿉꽌 옱嫄댁닠 썑 옱솢 봽濡쒓렇옩 슦꽑 닚쐞뿉꽌 愿젅 媛룞 踰붿쐞 쉶蹂듭쓣 以묒슂븯寃 媛뺤“븯怨 엳떎55,56. 2020뀈 Andrade 벑52쓽 쟾諛⑹떗옄씤 닔닠 썑 湲곕뒫 쉶蹂듭뿉 븳 泥닿퀎쟻 臾명뿄 怨좎같쓣 蹂대㈃ 議곌린 愿젅 媛룞 踰붿쐞 슫룞쓣 沅뚯옣븯怨 엳떎.

뒳愿젅쓽 셿쟾 떊쟾 옱嫄댁닠 썑 1–2二 궡뿉 鍮좊Ⅴ寃 떖꽦빐빞 븷 以묒슂 紐⑺몴 以 븯굹씠떎. 洹 씠쑀뒗 셿쟾븳 떊쟾쓽 寃고븤 쟾諛⑹떗옄씤 옱嫄댁닠 썑 湲곕뒫쟻 寃곌낵瑜 굹걯寃 留뚮뱶뒗 쓷븳 썝씤 以 븯굹濡 븣젮졇 엳湲 븣臾몄씠떎57. 셿쟾븳 떊쟾씠 씠猷⑥뼱吏吏 븡쑝硫 鍮꾩젙긽쟻씤 蹂댄뻾씠 諛쒖깮븯寃 릺怨, 씠윭븳 옣湲곌컙쓽 鍮꾩젙긽쟻씤 蹂댄뻾 寃쎄낏-눜 愿젅 諛 뒳媛-눜 愿젅뿉꽌 鍮꾩젙긽쟻씤 愿젅 뿰怨 젒珥 븬젰, 吏냽쟻씤 눜궗몢洹 뼲젣 벑쓣 쑀諛쒗븳떎58,59. 삉븳 셿쟾 떊쟾 寃고븤 쟾諛 臾대쫷 넻利 諛쒖깮 쐞뿕씠 5諛 넂떎怨 蹂닿퀬릺뿀떎59. 삉 떎瑜 뿰援ъ뿉꽌뒗 옱嫄댁닠 썑 3二 씠궡뿉 셿쟾븳 떊쟾뿉 룄떖븯吏 紐삵븯뒗 寃껋쓣 cyclops 蹂묐 삉뒗 愿젅 꽟쑀솕利앹쓽 以묒슂 삁痢≪씤옄 슂냼濡 蹂닿퀬븯떎60.

떎닔쓽 뿰援ъ뿉꽌 닔닠 썑 利됯컖쟻씤 떊쟾 슫룞쓽 떆옉씠 뒳愿젅쓽 湲곕뒫쟻 넀긽씠굹 씠떇臾쇱쓽 씠셿쓣 씪쑝궎吏 븡쓬씠 엯利앸릺뿀떎32. 뵲씪꽌 닔닠 떎쓬궇遺꽣 닔룞쟻씤 뒪듃젅移 슫룞쓣 떆옉쑝濡 뒳媛쒓낏 媛룞솕 슫룞, 뒫룞쟻씤 눜궗몢洹 옒二쇨린 슫룞 벑쓣 떆뻾븷 닔 엳떎(Fig. 10)61. 留뚯빟 珥덇린 2二 궡뿉 셿쟾 떊쟾씠 떖꽦릺吏 븡쑝硫 hanging weight 슫룞 諛 닔룞쟻씤 臾대쫷 닃윭二쇨린 슫룞(passive knee over press)쓣 넻빐 愿젅 궡 뿰遺 議곗쭅쓣 떊옣븯뿬 二쇱뼱빞 븳떎(Fig. 11).

Fig. 10. Exercises for knee extension. (A) Passive knee extension. (B) Patellar mobilization. (C) Quadricep set exercise.
Fig. 11. Passive knee extension over press for overcoming knee extension deficit.

援닿끝 踰붿쐞뒗 떊쟾怨 떖由 옱솢 怨쇱젙 以묒뿉 젏吏꾩쟻쑝濡 쉶蹂듬릺뼱빞 븳떎61. 씪諛섏쟻쑝濡 닔닠 썑 4–6二 떆湲곌퉴吏 90°–120° 踰붿쐞瑜 떖꽦븷 寃껋쓣 沅뚯옣븯怨 엳떎53. 利됯컖쟻 샊 쟻洹뱀쟻씠吏 븡怨 젏吏꾩쟻쑝濡 떆뻾빐빞 븯硫 ,諛섏썡 뿰怨⑦뙋 遊됲빀닠, 뿰怨 옱깮닠 벑 룞諛 닔닠 쑀臾댁뿉 뵲瑜 二쇱쓽媛 븘슂븳 寃쎌슦媛 엳떎62. 留뚯빟 援닿끝 踰붿쐞 슫룞쓣 吏꾪뻾븷 븣 遺醫낆씠 엳떎硫 臾대━븯吏 留먭퀬 泥쒖쿇엳 吏꾪뻾빐빞 븳떎. 닔닠 썑 珥덇린 援닿끝 슫룞 떆 옄媛 뻹뒪듃留 嫄댁쓣 궗슜븳 寃쎌슦 뻹뒪듃留곸쓽 洹쇱닔異뺤씠 諛쒖깮븯寃 릺뒗 뒫룞쟻씤 援닿끝 슫룞蹂대떎 洹쇱닔異뺤쓣 쑀諛쒗븯吏 븡뒗 닔룞쟻씤 슫룞遺꽣 떆옉븯뿬 뒫룞 蹂댁“ 슫룞쓽 떒怨꾨줈 吏꾪뻾빐빞 븳떎(Fig. 12).

Fig. 12. Early-stage range of motion (ROM) exercises. (A) Passive knee ROM exercise. (B) Active-assisted knee ROM exercise.

3) 泥댁쨷 遺븯 슫룞

泥댁쨷 遺븯 슫룞 愿젅 遺醫낆쓣 以꾩씠怨, 愿젅 二쇰 洹쇱쑁쓽 벑泥숈꽦 솢꽦쓣 珥됱쭊븯뿬 洹 쐞異뺤쓣 留됯퀬, 愿젅 궡쓽 꽟쑀솕利앹쓣 媛먯냼떆궎뒗 슚怨쇨 엳떎63,64. 떎留, 븘吏곴퉴吏 뿰援ъ옄뱾 궗씠뿉꽌 泥댁쨷 遺븯 젙룄뿉 븳 쓽寃ъ 利됯컖쟻씤 셿쟾븳 泥댁쨷 遺븯뿉꽌遺꽣 옱嫄댁닠 썑 8二쇨퉴吏쓽 젏吏꾩쟻 遺븯 벑쑝濡 떎뼇븯硫, 理쒖쟻쓽 泥댁쨷 遺븯 젙룄뿉 븳 빀移섎맂 쓽寃ъ 뾾떎65-67. 珥덇린 泥댁쨷 遺븯濡 씤븳 씠떇臾쇰줈쓽 怨쇰룄븳 븬諛뺤 씠떇臾쇱쓽 怨좎젙 씠셿 諛 씠썑 遺덉븞젙꽦쓽 쐞뿕쓣 利앷븷 닔 엳뼱 떊以묓븳 젒洹쇱씠 븘슂븯湲 븣臾몄씠떎68. 뿰遺 議곗쭅 씠떇臾쇱쓣 씠슜븳 옱嫄댁닠 썑 議곌린 媛냽솕 옱솢쓣 떆뻾븯硫, 怨 꽣꼸 궡뿉꽌 씠떇臾쇱씠 옣異뺤쓣 뵲씪 吏곸씠뒗 슚怨(bunge cord effect) 떆긽硫댁뿉꽌 吏곸씠뒗 슚怨(windshield wiper effect) 벑쑝濡 怨 꽣꼸씠 솗옣맆 닔 엳떎69,70. 옱嫄댁닠 썑 吏뿰맂 泥댁쨷 遺븯 옱솢 봽濡쒓렇옩怨 媛냽솕맂 옱솢 봽濡쒓렇옩쓣 鍮꾧탳븳 Fan 벑67쓽 硫뷀遺꾩꽍 뿰援ъ뿉꽌뒗 媛냽솕맂 泥댁쨷 遺븯 洹몃9뿉꽌 怨 꽣꼸 솗옣 諛 뒳愿젅 遺덉븞젙꽦쓽 諛쒖깮 쐞뿕씠 利앷븳떎怨 븯떎. 洹몃윭誘濡 쓽猷뚯쭊 닔닠 썑 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 援ъ꽦븷 븣 泥댁쨷 遺븯瑜 떊以묓븯寃 뙋떒븯怨 쟻슜빐빞 븳떎. 뵲씪꽌 蹂 옄뱾 옱嫄댁닠 썑 珥덇린 3二쇨퉴吏뒗 넻利앹씠 뾾뒗 닔以뿉꽌 紐⑸컻쓣 궗슜븳 遺遺 泥댁쨷 遺븯(30% 젙룄 遺븯)瑜 떆옉쑝濡 젏吏꾩쟻쑝濡 遺븯瑜 뒛젮 3二 씠썑뿉 쟾泥 泥댁쨷 遺븯瑜 븯뒗 寃껋쑝濡 沅뚯옣븯怨 엳떎.

4) 洹쇰젰 쉶蹂 슫룞

닔닠 썑 湲곕뒫 쉶蹂 移섎즺 以 留롮 뿰援ъ뿉꽌 媛뺤“븯뒗 遺遺꾩씠 뒳愿젅쓽 떊쟾젰쓣 쉶蹂듯븯뒗 寃껋씠떎57,58,71-75. Thomas 벑76쓽 뿰援ъ뿉 쓽븯硫 닔닠 썑 눜궗몢洹 洹쇰젰쓽 寃곗넀 5%–40%, 뻹뒪듃留 洹쇰젰쓽 寃곗넀 9%–27%源뚯 떎뼇븳 踰붿쐞濡 굹궃떎怨 븯떎. 듅엳 뒳愿젅 떊쟾젰쓽 빟솕뒗 湲곕뒫 媛먯냼쓽 二쇱슂 썝씤쑝濡 옉슜븯硫, 鍮꾩젙긽쟻씤 蹂댄뻾, 吏냽쟻씤 븵臾대쫷 넻利, 븯吏쓽 遺덉븞젙꽦, 怨④젅뿼 利앷, 슫룞 蹂듦쓽 吏뿰 벑怨 뿰愿릺뼱 엳떎75,77,78. 옱嫄댁닠 썑 洹쇰젰 븯뒗 궗슜맂 씠떇嫄댁쓽 醫낅쪟뿉 뵲씪 젙룄쓽 李⑥씠뒗 엳寃좎쑝굹 떎닔뿉꽌 諛쒖깮븯뒗 寃껋쑝濡 蹂댁씠硫, 씠뒗 醫낆쥌 뼇痢 븯吏뿉꽌 諛쒖깮븳떎79. 洹몃윭誘濡 쟾諛⑹떗옄씤 옱嫄댁닠 썑 珥덇린 떒怨꾩뿉꽌 뒳愿젅 떊쟾젰쓽 빟솕瑜 理쒖냼솕븯뒗 寃껋씠 以묒슂븳뜲, 씠瑜 쐞빐꽌 닔닠 썑 洹쇰젰 쉶蹂 슫룞쓣 理쒕븳 鍮⑤━ 떆옉븯뿬빞 븳떎. 떎닔쓽 뿰援ъ뿉꽌 닔닠 썑 떎쓬 궇遺꽣 눜궗몢洹쇱쓽 洹쇱닔異 뒫젰쓣 쉶蹂듯븯뒗 슫룞쓣 떆옉븷 寃껋쓣 媛뺤“븯怨 엳떎. Harput 벑80쓽 뿰援ъ뿉 쓽븯硫 쟾諛⑹떗옄씤 옱嫄댁닠 썑 4–6二쇱뿉 눜궗몢洹쇱쓽 理쒕 벑泥숈꽦 洹쇱닔異 洹쇰젰(maximal isometric voluntary force)쓣 痢≪젙븳 寃곌낵, 솚痢≪씠 嫄댁륫뿉 鍮꾪빐 40%뿉꽌 60%쓽 寃곗넀쓣 蹂댁떎怨 븯떎. 理쒓렐뿉뒗 닔닠 썑 눜궗몢洹쇱쓽 吏냽쟻씤 빟솕瑜 씪쑝궎뒗 二쇱슂 슂씤 以 븯굹濡 愿젅湲곗씤꽦 洹쇱뼲젣 쁽긽씠 以묒슂븯寃 뼵湲됰릺怨 엳떎25,81. 닔닠 썑 珥덇린뿉 愿젅湲곗씤꽦 洹쇱쑁 뼲젣 쁽긽쓣 洹밸났븯吏 紐삵븯硫 洹쇱쑁웾怨 洹쇰젰쓣 理쒖쟻쑝濡 쉶蹂듯븷 닔 뾾떎82. 떒닚븯寃 쟾넻쟻씤 썕젴 媛뺣룄쓽 슫룞쑝濡쒕뒗 빐寃고븯뒗 뜲뿉 븳怨꾧 엳쑝誘濡, 珥덇린 洹쇰젰 쉶蹂 쟾왂쓣 怨꾪쉷븯뒗 뜲 엳뼱꽌 愿젅湲곗씤꽦 洹쇱뼲젣 쁽긽 洹밸났 以묒슂븯寃 怨좊젮빐빞 븷 遺遺꾩씠떎. 愿젅湲곗씤꽦 洹쇱뼲젣 쁽긽뿉 븳 以묒옱 諛⑸쾿쑝濡 洹뱀삩 깋媛곸튂猷(croyothrapy), 뻹뒪듃留 뵾濡 쑀諛 슫룞, 洹쇱떊寃 쟾湲 옄洹, 삁瑜 젣븳 슫룞(blood flow restriction) 벑씠 슚怨쇱쟻씤 寃껋쑝濡 蹂닿퀬릺怨 엳떎25,83. 理쒓렐 留롮 愿떖씠 紐⑥씠뒗 以묒옱 諛⑸쾿 洹쇱떊寃 쟾湲 옄洹밴낵 삁瑜 젣븳 슫룞씠떎(Fig. 13).

Fig. 13. Treatments of arthrogenic muscle inhibition. (A) Neuromuscular electrical stimulation. (B) Blood flow restriction training.

洹쇱떊寃 옄洹뱀쓽 썝由щ뒗 뵾遺 몴硫댁뿉 遺李⑸맂 쟾洹뱀뿉꽌 떊寃 꽟쑀瑜 깉遺꾧레떆耳 슫룞 떊寃쎌쓽 吏곸젒쟻씤 솢꽦솕瑜 쑀諛쒗븯硫 뼲젣맂 紐⑦넗돱윴(motorneurons)쓽 吏곸젒쟻씤 룞썝쓣 媛뒫븯寃 븯뒗 寃껋씠떎. 삉븳 쑀궗븳 媛뺣룄쓽 옄諛쒖쟻 洹쇱닔異뺢낵 鍮꾧탳븯뿬 넂 鍮꾩쑉濡 type II 洹쇱꽟쑀 솢꽦쓣 쑀룄븯뒗 寃껋쑝濡 븣젮졇 엳떎84,85. 븘吏 쟻슜 떆媛 諛 湲곌컙 벑 젙삎솕맂 봽濡쒗넗肄쒖 뾾쑝굹, 理쒓렐 蹂닿퀬맂 뿰援ъ뿉꽌뒗 1쉶떦 20遺꾩뵫 二 2쉶濡 12二 룞븞 쟻슜븯쓣 븣 洹쇰젰 뼢긽뿉 슚怨쇰 蹂댁씤떎怨 븯떎86. 쟾湲 二쇳뙆닔 벑룄 젙삎솕맂 봽濡쒗넗肄쒖 뾾쑝굹, Hauger 벑87쓽 蹂닿퀬뿉 뵲瑜대㈃ 二쇳뙆닔뒗 50–75 Hz씠怨, 떊寃쎌옄洹 솢꽦 5–10珥 옄洹밴낵 30–50珥 쑕吏湲곗쓽 궗씠겢濡 쟻슜븯硫, 쟾瑜 옄洹 媛뺣룄뒗 洹쇱쑁 닔異뺤쓣 떖꽦븯湲 쐞븳 理쒖냼 슂援 궗빆씤 “理쒕 寃щ뵜 닔 엳뒗 젙룄” 삉뒗 “렪븞븳 젙룄”瑜 뒓굜 닔 엳뒗 젙룄媛 슚怨쇱쟻씠씪怨 븯떎. 蹂 옄뱾 닔닠 珥덇린뿉뒗 洹 쐞異 삁諛⑹쓣 紐⑺몴濡 쟻슜븯怨, 닔닠 썑 3二쇰꽣뒗 怨좎쑀닔슜媛먭컖 슫룞 떆 쟻슜븯硫, 6二 씠썑濡쒕뒗 洹 湲곕뒫 쉶蹂듭쓣 쐞븳 紐⑹쟻쑝濡 쟻슜븯怨 엳떎.

삁瑜 젣븳 슫룞踰뺤 媛뺣룄쓽 슫룞쓣 븯硫댁꽌 洹쇱쑁쑝濡쒖쓽 삁瑜섎 젣븳븯뿬 젙留μ쓽 쓲由꾩쓣 李⑤떒븯硫댁꽌 룞떆뿉 룞留μ쓽 쑀엯쓣 젣븳븯뒗 썝由щ 씠슜븳 寃껋씠떎88. 洹쇱쑁쑝濡쒖쓽 삁瑜섍 젣븳릺硫 媛뺣룄 슫룞 以 洹쇱쑁 꽭룷濡쒖쓽 궛냼 怨듦툒씠 媛먯냼븯寃 릺硫, 씠윭븳 臾댁궛냼꽦 솚寃쎌 떒諛깆쭏 빀꽦쓣 珥됱쭊븯뒗 샇瑜대が 蹂솕瑜 쑀룄븯뿬 怨좉컯룄쓽 슫룞쓣 븯쓣 븣 媛숈 깮由ы븰쟻 솚寃쎌쓣 留뚮뱾뼱二쇱뼱 洹 鍮꾨瑜 珥됱쭊븳떎88. Ohta 벑89 쟾諛⑹떗옄씤 옱嫄댁닠 솚옄뿉寃뚯꽌 삁瑜 젣븳 슫룞쓣 쟻슜븯쓣 븣 뜑 겙 洹쇱쑁 鍮꾨 洹쇰젰쓽 뼢긽쓣 蹂댁떎怨 븯떎. 理쒓렐 닔닠 썑 삁瑜 젣븳 슫룞쓽 슚怨쇱뿉 븳 泥닿퀎쟻 怨좎같뿉꽌 11媛쒖쓽 愿젴 뿰援щ 醫낇빀빐 蹂댁븯쓣 븣, 닔닠 썑 삁瑜 젣븳 슫룞쓣 떆뻾븳 洹몃9뿉꽌 議곌뎔怨 鍮꾧탳븯뿬 눜궗몢洹 洹쇱쑁웾쓽 뼢긽쓣 엯利앺븯떎怨 븯떎90. Hughes 벑91씠 삁瑜 젣븳 슫룞 슚怨쇱뿉 븳 泥닿퀎쟻 怨좎같쓣 넻빐 沅뚯옣븯뒗 쟻슜 諛⑸쾿쓣 蹂대㈃, 궗吏 룓뇙 븬젰(limb occlusion pressure) 理쒖냼 40%뿉꽌 떆옉, 쟻슜 떆媛꾩 룊洹 20遺 젙룄, 鍮덈룄뒗 二쇰떦 2–3쉶, 湲곌컙 理쒖냼 4二, 슫룞 봽濡쒗넗肄쒖 4꽭듃濡 援ъ꽦 벑씠떎. 삉븳, 泥 꽭듃뒗 30쉶, 몢 踰덉㎏ 꽭듃遺꽣 留덉留 꽭듃源뚯뒗 15쉶 諛섎났, 슫룞 媛뺣룄뒗 1 理쒕 諛섎났(repeated maximum)쓽 10%–30% 젙룄濡 吏꾪뻾븯뒗 寃껋씠 슚怨쇱쟻씤 寃껋쑝濡 沅뚯옣븯怨 엳떎. 븯吏留 씤吏쟻씤 臾몄젣, 떖삁愿 吏덊솚, 삉뒗 삁뿭븰쟻 諛섏쓳쓽 蹂솕媛 엳뒗 솚옄뱾뿉寃뚮뒗 二쇱쓽빐꽌 쟻슜빐빞 븳떎92,93.

씠떇臾 移섏쑀뿉 븳 씠빐뒗 洹쇰젰 쉶蹂 봽濡쒓렇옩쓣 꽕怨꾪븷 븣 떕엺 궗뒳 슫룞怨 뿴由 궗뒳 슫룞쓣 諛곕텇븯뒗 뜲뿉 룄쓣 以떎82,94. 뿴由 궗뒳 슫룞 諛⑸쾿뿉 뵲瑜 눜궗몢洹쇱쓽 닔異뺤 寃쎄낏쓽 쟾諛 쟾쐞瑜 쑀諛쒗븯뿬, 씠떇臾쇱뿉 넂 뒪듃젅뒪濡 씤븳 씠떇臾 移섏쑀 諛⑺빐 씠셿쓣 쑀諛쒗븷 닔룄 엳떎45. Beynnon 벑95,96쓽 뿰援ъ뿉 뵲瑜대㈃ 뿴由 궗뒳 긽깭뿉꽌 15°–30° 踰붿쐞쓽 벑泥숈꽦 젅洹 씡뒪뀗뀡 슫룞 쟾諛⑹떗옄씤쓽 湲댁옣(strain)쓣 3.2%뿉꽌 4.4%源뚯 利앷떆궎뒗 寃껋쑝濡 蹂닿퀬븯떎. 洹몃윭굹 뿴由 궗뒳 슫룞쓣 珥덇린뿉 떆뻾븯뜑씪룄 슫룞 媛곷룄瑜 쟻젅븯寃 꽕젙븯硫 寃쎄낏쓽 쟾諛 쟾쐞뿉 遺젙쟻씤 쁺뼢쓣 誘몄튂吏 븡쓬쓣 蹂닿퀬븳 뿰援ш 留롫떎31,32,97-99. Fukuda 벑31쓽 눜궗몢洹 媛뺥솕瑜 쐞븳 뿴由 궗뒳 슫룞쓽 臾댁옉쐞 議 엫긽 뿰援ъ뿉 쓽븯硫, 닔닠 썑 4二쇱㎏ 45°–90°濡 젣븳맂 踰붿쐞뿉꽌 떆뻾븳 洹몃9怨 닔닠 썑 12二쇱㎏ 0°–90° 슫룞쓣 떆옉븳 洹몃9쓽 洹쇰젰 諛 寃쎄낏쓽 쟾諛 쟾쐞瑜 鍮꾧탳븯쓣 븣, 議곌린뿉 젣븳맂 愿젅 媛룞 踰붿쐞뿉꽌 뿴由 궗뒳 슫룞쓣 떆옉븳 洹몃9뿉꽌 뜑 鍮좊Ⅸ 洹쇰젰 뼢긽쓣 蹂댁怨, 寃쎄낏쓽 쟾諛 쟾쐞뒗 뿴由 궗뒳 슫룞쓣 뒭寃 떆옉븳 洹몃9怨 李⑥씠媛 뾾뿀떎怨 蹂닿퀬븯떎.

깮泥댁뿭븰쟻 뿰援ъ뿉 뵲瑜대㈃ 떕엺 궗뒳 슫룞 寃-눜 愿젅쓽 븬諛뺣젰쓣 利앷떆궎怨, 뻹뒪듃留 洹쇰젰怨 룞떆닔異(co-contraction)쓣 솢꽦솕븯뿬 寃쎄낏쓽 쟾諛 쟾씠瑜 媛먯냼떆耳 씠떇臾쇱쓽 怨쇰룄븳 뒪듃젅뒪瑜 以꾩씤떎怨 븯떎100. 쁽옱源뚯 떎닔쓽 뿰援ъ뿉꽌 0°–45°쓽 踰붿쐞 궡뿉꽌쓽 뒪荑쇳듃 媛숈 뿴由 궗뒳 슫룞 珥덇린뿉 떆뻾븯뒗 寃껋쓣 沅뚯옣븯怨 엳떎101. 洹몃윭굹 珥덇린 떒怨꾩뿉꽌 넻利 諛 遺醫낆씠 룞諛섎맂 愿젅湲곗씤꽦 洹쇱뼲젣 利앹긽씠 엳떎硫 넂 遺븯뿉꽌쓽 슫룞 沅뚯옣릺吏 븡뒗떎. 씠 븣뿉뒗 궙 遺븯쓽 뿴由 궗뒳 슫룞씠 沅뚯옣릺硫, 洹쇱援щ젰 뼢긽쓣 쐞빐 1꽭듃 20쉶瑜 4–6꽭듃 諛섎났븯뿬 洹쇱쑁 뵾濡쒕 쑀諛쒗븷 닔 엳뒗 遺븯濡쒕룄 눜궗몢洹 洹쇰젰쓣 뼢긽븷 닔 엳떎102.

쟾諛⑹떗옄씤 닔닠 썑 뒳愿젅 援닿끝젰 닔닠 珥덇린뿉 40%뿉꽌 50%쓽 寃곗넀씠 굹굹硫, 슫룞 蹂듦 떆湲곗뿉룄 0%뿉꽌 20%쓽 寃곗넀씠 吏냽맆 닔 엳쓬씠 蹂닿퀬릺怨 엳떎80,103. 援닿끝젰쓽 寃곗넀 鍮꾩젙긽쟻씤 蹂댄뻾, 怨④젅뿼쓽 諛쒖깮, 뒪룷痢 蹂듦 떆 옱遺긽 벑쓣 利앷떆궎뒗 寃껋쑝濡 븣젮졇 엳떎104. 듅엳 뻹뒪듃留 옄媛嫄댁쓣 씠슜븳 솚옄뱾쓽 寃쎌슦 梨꾩랬븳 뻹뒪듃留 洹쇱쑁쓽 꽑깮쟻 洹쇱쑁 뼲젣 諛 쐞異뺤쑝濡 씤빐 援닿끝젰 쉶蹂듭뿉 뼱젮쓣 寃れ쓣 닔 엳떎105,106. 뵲씪꽌 뻹뒪듃留 옄媛嫄댁쓣 씠슜븳 솚옄뱾뿉寃뚮뒗 궙 떒怨꾨꽣 젏李⑥쟻쑝濡 遺븯瑜 利앷븯뒗 빆 듃젅씠떇 봽濡쒗넗肄쒖씠 쟻슜릺뼱빞 븳떎104. 뻹뒪듃留 옄媛嫄댁쓣 궗슜븳 寃쎌슦 닔닠 썑 援닿끝洹 媛뺥솕 슫룞쓣 6–8二쇨컙 吏뿰떆耳 怨듭뿬 遺쐞뿉 移섏쑀瑜 뿀슜븯뒗 寃껋씠 沅뚯옣맂떎45,107,108. Buckthorpe 벑104 珥덇린 떒怨꾩뿉꽌뒗 short-medium 젙룄쓽 洹쇱쑁 湲몄씠뿉꽌 媛뺣룄쓽 벑泥숈꽦 슫룞쓣 떆옉븯怨, 젏吏꾩쟻쑝濡 벑옣꽦 슫룞쑝濡 吏꾪뻾븯硫, 留덉留 떒怨꾩뿉꽌뒗 뻹뒪듃留 遺긽쓣 삁諛⑺븯湲 쐞븳 떊옣꽦 닔異 湲곕뒫 뼢긽 슫룞 떒怨꾨줈 吏꾪뻾븷 寃껋쓣 沅뚯옣븯怨 엳떎(Fig. 14).

Fig. 14. Stages for knee flexor strengthening after anterior cruciate ligament reconstruction. (A) Stage I (3–5 weeks): squat (co-contraction). (B) Stage II (6–8 weeks): active leg curl without resistance (concentric). (C) Stage III (9–12 weeks): leg curl with resistance (concentric). (D) Stage IV (3–5 months): Romanian deadlift (eccentric). (E) Stage V (from 6 months): nordic hamstring curl (eccentric).

洹쇰젰 쉶蹂듭뿉 엳뼱꽌 눜궗몢洹 諛 뻹뒪듃留 洹쇰젰 씠쇅뿉룄 怨좊젮빐빞 븷 寃껋 諛쒕ぉ쓽 議깆援닿끝 洹쇰젰怨 怨좉젅 二쇰 洹쇰젰쓽 寃곗넀씤뜲, 씠뒗 洹쇱떊寃 議곗젅 諛 吏곸엫쓽 吏덉뿉 쁺뼢씪 誘몄튌 닔 엳湲 븣臾몄씠떎58. 湲곕뒫 쉶蹂듭쓽 留덉留 떒怨꾩뿉꽌 떖由ш린 諛 젏봽 李⑹ 벑쓣 썝솢븯寃 븯젮硫 옱솢쓽 珥덇린 떒怨꾩뿉 議깆援닿끝洹 슫룞쓣 떆옉븯뒗 寃껋씠 以묒슂븯떎(Fig. 15)109,110.

Fig. 15. Exercises for the muscles around the ankle and hip joints. (A) Calf raise exercise. (B) Hip abduction exercise. (C) Clamshell exercise.

怨좉젅 쇅쟾洹 諛 쇅쉶쟾쓽 솢꽦 빟솕뒗 쟾諛⑹떗옄씤 옱넀긽 諛 븵臾대쫷 넻利앹쓽 쐞뿕 슂씤쑝濡 蹂닿퀬릺怨 엳떎111,112. 룞쟻씤 떕엺 궗뒳 슫룞쓣 븯뒗 룞븞뿉 뒳愿젅씠 쇅諛섎젰쓣 諛쏆 븡뒗 寃껋씠 以묒슂븳뜲, 씠瑜 삁諛⑺븯湲 쐞빐 怨좉젅 二쇰 洹쇰젰 쉶蹂 슫룞룄 湲곕뒫 쉶蹂 봽濡쒓렇옩뿉 룷븿릺뼱빞 븳떎113.

5) 怨좎쑀닔슜媛먭컖 쉶蹂 슫룞

怨좎쑀닔슜媛먭컖씠씪怨 븯뒗 寃껋 愿젅, 옒以, 씤, 洹쇱쑁, 뵾遺 벑 씠 뿰愿맂 떖遺 議곗쭅쓽 닔슜泥댁뿉꽌 諛쒖깮븯뒗 紐⑤뱺 떊寃쏀븰쟻씤 옄洹뱀쓣 珥앹묶븯뒗 寃껋씠떎. 씠뒗 洹쇱쑁, 옒以, 愿젅 궡쓽 湲곌퀎쟻 닔슜泥대 넻븯뿬 援ъ떖꽦 떊寃쎄꼍濡쒕 嫄곗퀜 以묒텛떊寃쎄퀎뿉 쟾떖븯뿬 쓽誘몄엳뒗 諛⑹떇쑝濡 젙蹂대 泥섎━븯뒗 뒫젰쑝濡, 寃곌낵쟻쑝濡 諛섏궗 諛섏쓳 諛 슫룞 議곗젅뿉 以묒슂븳 뿭븷쓣 븳떎. 쟾諛⑹떗옄씤뿉뒗 Pacinian corpuscles, Ruffuni endings, Golgi tendon organs 벑怨 媛숈 湲곌퀎쟻 닔슜泥닿 뭾遺븯떎114. 씠윭븳 닔슜泥대뱾 怨좎쑀닔슜媛먭컖 뵾뱶諛깆쓣 넻빐 寃쎄낏쓽 쟾諛 쟾쐞 寃쎄낏쓽 궡쉶쟾쓣 젣븳븯뿬 臾대쫷쓽 젙긽쟻씤 슫룞븰뿉 湲곗뿬븳떎115,116. 뵲씪꽌 닔닠 썑 怨좎쑀닔슜媛먭컖 洹-떊寃 議곗젅 湲곕뒫뿉 以묒슂븳 슂냼씠硫, 꽦怨듭쟻씤 寃곌낵瑜 쐞빐 닔닠 썑 쉶蹂듭쓣 쐞븳 湲곕뒫 슫룞 븘닔쟻쑝濡 怨좊젮빐빞 븳떎24. Hewett 벑117 닔닠 썑 珥덇린뿉 솚옄媛 吏硫댁뿉 諛쒖쓣 뵛뒗 닚媛꾨꽣 怨좎쑀닔슜媛먭컖 슫룞씠 떆옉맂떎怨 븯怨 솚옄媛 寃щ뵜 닔 엳뒗 닔以뿉꽌 珥덇린쓽 蹂댄뻾쓣 떆옉븯뒗 寃껋 珥덇린뿉 怨좎쑀닔슜媛먭컖쓽 鍮좊Ⅸ 쉶蹂듭쓣 珥됱쭊븷 닔 엳떎 븯떎. 삉븳 洹좏삎 蹂대뱶뿉꽌쓽 洹좏삎 슫룞씠 닔닠 썑 珥덇린 떒怨꾩뿉 떆옉븯뒗 寃껋쓣 沅뚯옣븯떎. Noyes Barber-Westin118뒗 쟾諛⑹떗옄씤 닔닠 씠썑 媛뒫븳 鍮⑤━ 怨좎쑀닔슜媛먭컖 諛 옄꽭 븞젙꽦 뼢긽뿉 룄쓣 二쇰뒗 슫룞쓣 룷븿븯뿬빞 븯怨, 洹 슫룞뱾 젏李⑥쟻쑝濡 떒怨꾨 뼱졄寃 吏꾪뻾빐 굹媛빞 븳떎怨 媛뺤“븯떎.

뵲씪꽌 쟾諛⑹떗옄씤 닔닠 썑 沅뚯옣릺뒗 怨좎쑀닔슜媛먭컖 쉶蹂 슫룞 떒怨꾨뒗 Fig. 16怨 媛숇떎.

Fig. 16. Stages for proprioceptive training after anterior cruciate ligament reconstruction. (A) Stage I (0–3 weeks): weight shifting. (B) Stage II (4–5 weeks): mini squats on the balance board. (C) Stage III (6–7 weeks): single leg balance on an unstable surface (low grade). (D) Stage IV (8–12 weeks): single leg balance on an unstable surface (high grade). (E) Stage V (from 3 months): perturbation training.

6) 닔닠 썑 떒怨꾨퀎 湲곕뒫 쉶蹂 슫룞 봽濡쒓렇옩

湲곕뒫 쉶蹂듭쓽 移섎즺쓽 떒湲 紐⑺몴뒗 遺醫낃낵 뿼利 諛섏쓳쓣 理쒖냼솕븯怨 셿쟾븳 愿젅 媛룞 踰붿쐞 洹쇱떊寃 議곗젅 뒫젰쓣 쉶蹂듯븯뒗 寃껋씠怨, 理쒖쥌 紐⑺몴뒗 遺긽 쟾 뒪룷痢 솢룞 닔以쑝濡 蹂듦븯뒗 寃껋씠떎10. 湲곕뒫 쉶蹂 봽濡쒓렇옩 씠떇嫄댁쓽 깮臾쇳븰쟻 꽦닕 怨쇱젙源뚯 怨좊젮븯硫댁꽌 젏吏꾩쟻쑝濡 씠猷⑥뼱졇빞 븳떎. 옱嫄댁닠 썑 떆湲곕퀎 湲곕뒫 쉶蹂 떒怨꾨 굹늿 理쒖떊 뿰援ъ뿉 뵲瑜대㈃, 닔닠 썑 5二쇨퉴吏 1떒怨꾩뿉꽌뒗 눜궗몢洹 諛 뻹뒪듃留 洹쇱쑁援곗쓽 벑泥숈꽦 洹쇰젰 슫룞, 愿젅 媛룞 踰붿쐞 슫룞, 삩 깋媛 슂踰뺤씠 빑떖 슂냼濡 援ъ꽦릺硫, 異붽쟻쑝濡 洹쇱떊寃 쟾湲 옄洹뱀슂踰, 뿁뜦씠 愿젅 쇅쟾洹쇨낵 궡쟾洹 슫룞, 뒳媛쒓낏 媛룞솕 슫룞, 諛쒕ぉ 슫룞, 젙긽 蹂댄뻾 썕젴 벑쓣 떆뻾븷 寃껋쓣 沅뚯옣븳떎10. 씠썑 12二쇨퉴吏쓽 2떒怨 떆젏뿉꽌뒗 洹쇰젰 媛뺥솕, 洹쇱떊寃 議곗젅 썕젴, 怨좎쑀닔슜媛먭컖 슫룞뿉 以묒젏쓣 몦떎. 삉븳 2떒怨꾩뿉꽌뒗 젅洹 봽젅뒪 벑쓽 슫룞쓣 넻빐 빆꽦 슫룞쓽 젏吏꾩쟻 怨쇰븯媛 씠琉꾩룄濡 븯怨, 긽깭뿉 뵲씪 옄쟾嫄 湲, 怨꾨떒쓣 씠슜븳 뒪뀦 뾽 슫룞, 듃젅뱶諛뿉꽌쓽 嫄룰린 슫룞 벑씠 異붽맆 닔 엳떎. 12二 씠썑 24二쇨퉴吏쓽 3떒怨꾩뿉꽌뒗 怨좎쑀닔슜媛먭컖 슫룞肉 븘땲씪 삁긽移 븡 遺덉븞젙븳 긽솴뿉꽌 洹좏삎옟湲 슫룞, 떖由ш린, 젏봽, 뵆씪씠삤硫뷀듃由(plyometric) 슫룞쓣 떆옉븯寃 릺怨, 씠썑 떒怨꾩뿉꽌뒗 誘쇱꺽꽦(agility) 슫룞, 쟾젰 吏덉<, 諛⑺뼢 쟾솚(cutting drills) 슫룞 벑쓣 異붽븯硫댁꽌 젏吏꾩쟻쑝濡 뒪룷痢좊줈쓽 蹂듦媛 씠猷⑥뼱吏꾨떎. 븯吏留 닔닠 썑 湲곕뒫 쉶蹂듭쓽 怨쇱젙 떆媛 湲곕컲쑝濡쒕쭔 꽕젙릺뼱꽌뒗 븞 릺硫 媛앷쟻씤 뒳愿젅 湲곕뒫 슂냼뱾怨 솚옄쓽 떖由ъ궗쉶쟻 痢〓㈃ 삉븳 怨좊젮릺뼱빞 븳떎119,120. 삁瑜 뱾뼱 닔닠 썑 떖由ш린 蹂듦 湲곗뿉 빐 뿰援ы븳 scoping review뿉 뵲瑜대㈃, 쟾諛⑹떗옄씤 옱嫄댁닠 썑 떆湲곗쟻쑝濡쒕뒗 12二쇱㎏遺꽣 떆옉쓣 沅뚯옣븯吏留, 븞쟾븳 떖由ш린 蹂듦瑜 쐞빐 엫긽쟻, 湲곕뒫쟻 寃궗瑜 넻빐 뒳愿젅 셿쟾 떊쟾, 媛앷쟻 넻利 泥숇룄 2 誘몃쭔, 벑냽꽦 洹쇰젰 寃궗긽 뼇痢 눜궗몢洹 洹쇰젰 移 吏닔(limb symmetry index) 70% 씠긽, 븳 諛 硫由щ쎇湲 寃궗 긽 뼇痢 移 吏닔 70% 씠긽쓽 湲곗쓣 넻怨쇳븳 썑 떆옉븯湲곕 沅뚯옣븳떎121. 삉븳 쟾諛⑹떗옄씤 옱嫄댁닠 썑 뒪룷痢 솢룞 蹂듦 愿젴븳 理쒓렐쓽 泥닿퀎쟻 臾명뿄 怨좎같뿉꽌뒗 뒪룷痢 솢룞 蹂듦 쟾 湲곕뒫 寃궗瑜 넻빐 蹂듦 뿬遺瑜 寃곗젙븳 寃쎌슦 씠떇嫄댁쓽 옱뙆뿴瑜좎씠 궙떎怨 븯떎122. Turk 벑123쓽 뿰援ъ뿉 뵲瑜대㈃ 씠떇臾쇱씠 셿쟾엳 꽦닕빐吏怨 뙆뿴 媛뒫꽦씠 쟻 8媛쒖썡씠 吏궃 떆湲곗쟻 議곌굔, 2媛吏 씠긽쓽 湲곕뒫 寃궗(븳 諛 젏봽 寃궗긽 移 吏닔 90% 씠긽, 븳 諛 꽭떒 쎇湲 寃궗, 뒳愿젅 븞젙꽦 寃궗) 넻怨, 떖由ъ쟻 븞젙꽦 솗蹂, 洹쇰젰 寃궗긽 移 吏닔 90% 씠긽 벑쓽 湲곗뱾쓣 異⑹”븷 븣 븞쟾븯寃 뒪룷痢 솢룞 蹂듦瑜 븷 닔 엳떎怨 븯떎. 理쒓렐뿉뒗 anterior cruciate ligament-return to sport after injury scale (ACL-RSI) 젏닔 媛숈 寃利앸맂 떖由 寃궗瑜 뒪룷痢 솢룞 蹂듦 쟾 寃궗뿉 異붽빐꽌 떆뻾븯怨 엳떎. ACL-RSI뒗 뒪룷痢 솢룞 蹂듦瑜 삁痢≫븯뒗 媛옣 媛뺥븳 삁痢≪씤옄 以묒쓽 븯굹씠硫, 옱遺긽쓽 쐞뿕씠 엳뒗 솚옄瑜 떇蹂꾪븯뒗 뜲 룄쓣 以 닔 엳怨, 뒪룷痢 솢룞 蹂듦援곗뿉꽌 誘몃났洹援곕낫떎 쑀쓽븯寃 넂 젏닔瑜 蹂댁엫쓣 寃利앺븳 뿬윭 뿰援 寃곌낵뱾씠 엳떎122. 蹂 옄뱾 Table 2 媛숈 봽濡쒓렇옩쓣 떆湲곕퀎濡 쟻슜븯怨 엳떎.

Table 2 . Summary of functional recovery program after anterior cruciate ligament reconstruction

Functional recovery programTime
0닋3 wk4닋6 wk7닋12 wk3닋6 mo6닋9 mo9 mo
Range of motion0°닋30°0°닋90°0°닋120°Free
Weight bearing0닋3 wk4닋7 wk8 wk닋
Crutch/brace (0° lock) TWBBrace FWBBrace off
Muscle strength0닋3 wk4닋6 wk7닋9 wk10닋12 wk3닋5 mo6닋9 mo
Q-muscle activation
Straight leg raise
Bilateral squat (0°닋50°, static)
Ankle pump
Hip abduction
Bilateral squat (Ecc, Con)
Leg extension (90°닋45°)
Active leg curl (no resistance)
Sagittal plane
Calf raise
Bilateral lunge
Unilateral foundation exercise
Leg extension
Leg curl (machine)
Clamshell
Band leg press
Unilateral foundation exercise
Leg extension
Leg curl (machine)
Gradually increasing weight training (1.5닋2 times of body weight)
Endurance (high raps, low weight)
Deadlift (hamstring)
Ankle hopping
Gradually increasing weight training (1.5닋2 times of body weight)
Power (high speed, low weight)
Nordic (hamstring)
Proprioception0닋3 wk4닋6 wk7닋9 wk10닋12 wk3닋5 mo6닋9 mo
Weight shiftingCup walking
Single leg standing
Balance board
Single and double leg exercises on balance boardPerturbationPerturbationPerturbation
Functional exercise0닋3 wk4닋6 wk7닋9 wk10닋12 wk3닋5 mo6닋9 mo
Prepare of normal walkingNormal walkingStair
Sagittal, frontal plane
Bilateral landing
Triplanar motion
Running
Jump
Light plyometric
Basic agility
Speed, agility, quickness
Sport-specific drill

TWB: tolerable weight bearing, FWB: full weight bearing, Q: quadriceps, Ecc: eccentric contraction, Con: concentric contraction.


寃 濡

쟾諛⑹떗옄씤 넀긽 썑 븞쟾븯怨 鍮좊Ⅸ 湲곕뒫 쉶蹂듭쓣 넻븳 씪긽깮솢 蹂듦 諛 뒪룷痢 솢룞 蹂듦媛 以묒슂븯떎. 씠瑜 쐞븳 닔닠 쟾썑 湲곕뒫 쉶蹂 슫룞 봽濡쒓렇옩 븘닔쟻씠씪怨 븷 닔 엳떎. 蹂 醫낆꽕뿉꽌뒗 쟾諛⑹떗옄씤 옱嫄댁닠쓽 湲곕뒫 쉶蹂 移섎즺 愿젴 理쒖떊 臾명뿄뱾쓣 궡렣蹂닿퀬, 닔닠 쟾썑 湲곕뒫 쉶蹂듭쓣 쐞빐 빆紐⑸퀎濡 怨좊젮빐빞 븷 궡슜뱾뿉 빐 젙由ы빐 蹂댁븯떎. 쟾諛⑹떗옄씤 옱嫄댁닠 쟾썑 湲곕뒫 쉶蹂 봽濡쒓렇옩 1960뀈 씠썑遺꽣 떎뼇븯寃 蹂솕븯怨 諛쒖쟾빐 솕吏留, 븘吏 몴以솕맂 봽濡쒓렇옩 뾾떎. 洹몃윭굹, 닔닠 쟾遺꽣 뒪룷痢 蹂듦源뚯 湲곕뒫 쉶蹂 봽濡쒓렇옩쓽 怨쇱젙 썝移숈씠 엳뼱빞 븳떎. 썝移숈쓣 슂빟븯硫, 닔긽 썑 諛붾줈 떊냽븯怨 젙솗븯寃 엫긽쟻 吏꾨떒 諛 솚옄 遺꾨쪟瑜 븯怨, 愿젅 遺醫 諛 뿼利 議곗젅, 愿젅湲곗씤꽦 洹쇱쑁 뼲젣 媛먯냼, 愿젅 媛룞 踰붿쐞 쉶蹂, 洹쇰젰 쉶蹂, 怨좎쑀닔슜媛먭컖 쉶蹂 벑쓣 쐞븳 泥닿퀎쟻 봽濡쒓렇옩쓣 쟻슜빐빞 븳떎뒗 寃껋씠떎. 삉븳 닔닠 썑뿉뒗 씠떇臾쇱쓽 깮臾쇳븰쟻 移섏쑀 諛섏쓳 벑쓣 怨좊젮빐꽌 쟾넻쟻씤 諛⑸쾿(愿젅 媛룞 踰붿쐞 쉶蹂 諛 洹쇰젰 媛뺥솕)쓣 쎇뼱꽆뼱 怨좎쑀닔슜꽦 湲곕뒫怨 洹쇱떊寃 議곗젅 떆뒪뀥쓽 湲곕뒫 뼢긽쓣 珥덇린遺꽣 룷븿븯뒗 湲곕뒫 쉶蹂 봽濡쒓렇옩쓣 쟻슜빐빞 븳떎.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Conceptualization: SIC, DWL. Data curation: SJY, DHK. Formal analysis: SJY. Investigation: BSP. Methodology: JWL. Project administration: DWL, SJY. Resources: SIC, DHK, JWL. Supervision: DWL. Visualization: BSP, JWL. Writing–original draft: SIC, BSP. Writing–review & editing: SJY, DWL.

References
  1. Lee J, Lee K, Moon J, Yoon T. Force production patterns of muscles surrounding knee during running and cutting maneuvers: a musculoskeletal modeling approach. Asian J Kinesiol 2022;24:29-38.
    CrossRef
  2. Chung KS, Kim JH, Kong DH, Park I, Kim JG, Ha JK. An increasing trend in the number of anterior cruciate ligament reconstruction in korea: a nationwide epidemiologic study. Clin Orthop Surg 2022;14:220-6.
    Pubmed KoreaMed CrossRef
  3. Bisciotti GN, Chamari K, Cena E, et al. Anterior cruciate ligament injury risk factors in football. J Sports Med Phys Fitness 2019;59:1724-38.
    Pubmed CrossRef
  4. Georgoulis AD, Pappa L, Moebius U, et al. The presence of proprioceptive mechanoreceptors in the remnants of the ruptured ACL as a possible source of re-innervation of the ACL autograft. Knee Surg Sports Traumatol Arthrosc 2001;9:364-8.
    Pubmed CrossRef
  5. Niederer D, Behringer M, Stein T. Functional outcomes after anterior cruciate ligament reconstruction: unravelling the role of time between injury and surgery, time since reconstruction, age, gender, pain, graft type, and concomitant injuries. BMC Sports Sci Med Rehabil 2023;15:49.
    Pubmed KoreaMed CrossRef
  6. Malempati C, Jurjans J, Noehren B, Ireland ML, Johnson DL. Current rehabilitation concepts for anterior cruciate ligament surgery in athletes. Orthopedics 2015;38:689-96.
    Pubmed CrossRef
  7. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 2011;45:596-606.
    Pubmed CrossRef
  8. Carter HM, Littlewood C, Webster KE, Smith BE. The effectiveness of preoperative rehabilitation programmes on postoperative outcomes following anterior cruciate ligament (ACL) reconstruction: a systematic review. BMC Musculoskelet Disord 2020;21:647.
    Pubmed KoreaMed CrossRef
  9. Failla MJ, Logerstedt DS, Grindem H, et al. Does extended preoperative rehabilitation influence outcomes 2 years after acl reconstruction? A comparative effectiveness study between the MOON and Delaware-Oslo ACL cohorts. Am J Sports Med 2016;44:2608-14.
    Pubmed KoreaMed CrossRef
  10. Piedade SR, Leite Arruda BP, de Vasconcelos RA, Parker DA, Maffulli N. Rehabilitation following surgical reconstruction for anterior cruciate ligament insufficiency: what has changed since the 1960s? State of the art. J ISAKOS 2023;8:153-62.
    Pubmed CrossRef
  11. de Valk EJ, Moen MH, Winters M, Bakker EW, Tamminga R, van der Hoeven H. Preoperative patient and injury factors of successful rehabilitation after anterior cruciate ligament reconstruction with single-bundle techniques. Arthroscopy 2013;29:1879-95.
    Pubmed CrossRef
  12. Potts G, Reid D, Larmer P. The effectiveness of preoperative exercise programmes on quadriceps strength prior to and following anterior cruciate ligament (ACL) reconstruction: a systematic review. Phys Ther Sport 2022;54:16-28.
    Pubmed CrossRef
  13. Cunha J, Solomon DJ. ACL prehabilitation improves postoperative strength and motion and return to sport in athletes. Arthrosc Sports Med Rehabil 2022;4:e65-9.
    Pubmed KoreaMed CrossRef
  14. Pedersen M, Grindem H, Berg B, et al. Four distinct 5-year trajectories of knee function emerge in patients who followed the Delaware-Oslo ACL cohort treatment algorithm. Am J Sports Med 2022;50:2944-52.
    Pubmed KoreaMed CrossRef
  15. van Melick N, van Cingel RE, Brooijmans F, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med 2016;50:1506-15.
    Pubmed CrossRef
  16. Eastlack ME, Axe MJ, Snyder-Mackler L. Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc 1999;31:210-5.
    Pubmed CrossRef
  17. Fitzgerald GK, Axe MJ, Snyder-Mackler L. A decision-making scheme for returning patients to high-level activity with nonoperative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc 2000;8:76-82.
    Pubmed CrossRef
  18. Thoma LM, Grindem H, Logerstedt D, et al. Coper classification early after anterior cruciate ligament rupture changes with progressive neuromuscular and strength training and is associated with 2-year success: the Delaware-Oslo ACL cohort study. Am J Sports Med 2019;47:807-14.
    Pubmed KoreaMed CrossRef
  19. Palmieri-Smith RM, Kreinbrink J, Ashton-Miller JA, Wojtys EM. Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med 2007;35:1269-75.
    Pubmed CrossRef
  20. Torry MR, Decker MJ, Millett PJ, Steadman JR, Sterett WI. The effects of knee joint effusion on quadriceps electromyography during jogging. J Sports Sci Med 2005;4:1-8.
  21. Scanlan SF, Donahue JP, Andriacchi TP. The in vivo relationship between anterior neutral tibial position and loss of knee extension after transtibial ACL reconstruction. Knee 2014;21:74-9.
    Pubmed CrossRef
  22. Shelbourne KD, Gray T. Minimum 10-year results after anterior cruciate ligament reconstruction: how the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. Am J Sports Med 2009;37:471-80.
    Pubmed CrossRef
  23. Wasilewski SA, Covall DJ, Cohen S. Effect of surgical timing on recovery and associated injuries after anterior cruciate ligament reconstruction. Am J Sports Med 1993;21:338-42.
    Pubmed CrossRef
  24. Wilk KE, Macrina LC, Cain EL, Dugas JR, Andrews JR. Recent advances in the rehabilitation of anterior cruciate ligament injuries. J Orthop Sports Phys Ther 2012;42:153-71.
    Pubmed CrossRef
  25. Sonnery-Cottet B, Saithna A, Quelard B, et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med 2019;53:289-98.
    Pubmed KoreaMed CrossRef
  26. Yasuda K, Ohkoshi Y, Tanabe Y, Kaneda K. Muscle weakness after anterior cruciate ligament reconstruction using patellar and quadriceps tendons. Bull Hosp Jt Dis Orthop Inst 1991;51:175-85.
  27. Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 2010;40:250-66.
    Pubmed CrossRef
  28. Delaloye JR, Murar J, Vieira TD, et al. Knee extension deficit in the early postoperative period predisposes to cyclops syndrome after anterior cruciate ligament reconstruction: a risk factor analysis in 3633 patients from the SANTI study group database. Am J Sports Med 2020;48:565-72.
    Pubmed CrossRef
  29. Feil S, Newell J, Minogue C, Paessler HH. The effectiveness of supplementing a standard rehabilitation program with superimposed neuromuscular electrical stimulation after anterior cruciate ligament reconstruction: a prospective, randomized, single-blind study. Am J Sports Med 2011;39:1238-47.
    Pubmed CrossRef
  30. Ross MD, Denegar CR, Winzenried JA. Implementation of open and closed kinetic chain quadriceps strengthening exercises after anterior cruciate ligament reconstruction. J Strength Cond Res 2001;15:466-73.
    Pubmed CrossRef
  31. Fukuda TY, Fingerhut D, Moreira VC, et al. Open kinetic chain exercises in a restricted range of motion after anterior cruciate ligament reconstruction: a randomized controlled clinical trial. Am J Sports Med 2013;41:788-94.
    Pubmed CrossRef
  32. Isberg J, Fax챕n E, Brandsson S, Eriksson BI, K채rrholm J, Karlsson J. Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc 2006;14:1108-15.
    Pubmed CrossRef
  33. Tagesson S, Oberg B, Good L, Kvist J. A comprehensive rehabilitation program with quadriceps strengthening in closed versus open kinetic chain exercise in patients with anterior cruciate ligament deficiency: a randomized clinical trial evaluating dynamic tibial translation and muscle function. Am J Sports Med 2008;36:298-307.
    Pubmed CrossRef
  34. Jean LM, Gross DP, Chiu LZ. Knee Extensor Strength in Anterior Cruciate Ligament-Deficient Individuals Following Normal and Modified Squats: A Randomized Controlled Trial. J Strength Cond Res 2022;36:47-54.
    Pubmed CrossRef
  35. Yosmaoglu HB, Baltaci G, Kaya D, Ozer H. Tracking ability, motor coordination, and functional determinants after anterior cruciate ligament reconstruction. J Sport Rehabil 2011;20:207-18.
    Pubmed CrossRef
  36. Cooper RL, Taylor NF, Feller JA. A systematic review of the effect of proprioceptive and balance exercises on people with an injured or reconstructed anterior cruciate ligament. Res Sports Med 2005;13:163-78.
    Pubmed CrossRef
  37. Emami Meibodi MK, Naghizad J, Shamsoddini A. The effect of balance rehabilitation interventions with and without visual feedback on balance and proprioception of knee in patients with anterior cruciate ligament injury: a randomized clinical trial. Sport Sci Health 2022;18:125-9.
    CrossRef
  38. Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L. Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther 2005;85:740-54.
    Pubmed CrossRef
  39. Mehl J, Diermeier T, Herbst E, et al. Evidence-based concepts for prevention of knee and ACL injuries. 2017 guidelines of the ligament committee of the German Knee Society (DKG). Arch Orthop Trauma Surg 2018;138:51-61.
    Pubmed CrossRef
  40. Carter HM, Littlewood C, Webster KE, Smith BE. The effectiveness of preoperative rehabilitation programmes on postoperative outcomes following anterior cruciate ligament (ACL) reconstruction: a systematic review. BMC Musculoskelet Disord 2020;21:647.
    Pubmed KoreaMed CrossRef
  41. Hartigan E, Axe MJ, Snyder-Mackler L. Perturbation training prior to ACL reconstruction improves gait asymmetries in non-copers. J Orthop Res 2009;27:724-9.
    Pubmed KoreaMed CrossRef
  42. Shaarani SR, O'Hare C, Quinn A, Moyna N, Moran R, O'Byrne JM. Effect of prehabilitation on the outcome of anterior cruciate ligament reconstruction. Am J Sports Med 2013;41:2117-27.
    Pubmed CrossRef
  43. Kim DK, Hwang JH, Park WH. Effects of 4 weeks preoperative exercise on knee extensor strength after anterior cruciate ligament reconstruction. J Phys Ther Sci 2015;27:2693-6.
    Pubmed KoreaMed CrossRef
  44. Hanada M, Yoshikura T, Matsuyama Y. Muscle recovery at 1 year after the anterior cruciate ligament reconstruction surgery is associated with preoperative and early postoperative muscular strength of the knee extension. Eur J Orthop Surg Traumatol 2019;29:1759-64.
    Pubmed CrossRef
  45. Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther 2012;42:208-20.
    Pubmed CrossRef
  46. Perriman A, Leahy E, Semciw AI. The effect of open-versus closed-kinetic-chain exercises on anterior tibial laxity, strength, and function following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. J Orthop Sports Phys Ther 2018;48:552-66.
    Pubmed CrossRef
  47. Paulos L, Noyes FR, Grood E, Butler DL. Knee rehabilitation after anterior cruciate ligament reconstruction and repair. Am J Sports Med 1981;9:140-9.
    Pubmed CrossRef
  48. Noyes FR, Mangine RE, Barber S. Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 1987;15:149-60.
    Pubmed CrossRef
  49. Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 1987;15:225-9.
    Pubmed CrossRef
  50. Shelbourne KD, Nitz P. Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 1990;18:292-9.
    Pubmed CrossRef
  51. Nyland J, Mattocks A, Kibbe S, Kalloub A, Greene JW, Caborn DN. Anterior cruciate ligament reconstruction, rehabilitation, and return to play: 2015 update. Open Access J Sports Med 2016;7:21-32.
    Pubmed KoreaMed CrossRef
  52. Andrade R, Pereira R, van Cingel R, Staal JB, Espregueira-Mendes J. How should clinicians rehabilitate patients after ACL reconstruction? A systematic review of clinical practice guidelines (CPGs) with a focus on quality appraisal (AGREE II). Br J Sports Med 2020;54:512-9.
    Pubmed CrossRef
  53. Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther 2012;42:601-14.
    Pubmed KoreaMed CrossRef
  54. Quelard B, Sonnery-Cottet B, Zayni R, Ogassawara R, Prost T, Chambat P. Preoperative factors correlating with prolonged range of motion deficit after anterior cruciate ligament reconstruction. Am J Sports Med 2010;38:2034-9.
    Pubmed CrossRef
  55. Biggs A, Jenkins WL, Urch SE, Shelbourne KD. Rehabilitation for patients following ACL reconstruction: a knee symmetry model. N Am J Sports Phys Ther 2009;4:2-12.
  56. Shelbourne KD, Freeman H, Gray T. Osteoarthritis after anterior cruciate ligament reconstruction: the importance of regaining and maintaining full range of motion. Sports Health 2012;4:79-85.
    Pubmed KoreaMed CrossRef
  57. Noll S, Garrison JC, Bothwell J, Conway JE. Knee extension range of motion at 4 weeks is related to knee extension loss at 12 weeks after anterior cruciate ligament reconstruction. Orthop J Sports Med 2015;3:2325967115583632.
    Pubmed KoreaMed CrossRef
  58. Buckthorpe M, Della Villa F. Optimising the 'mid-stage' training and testing process after ACL reconstruction. Sports Med 2020;50:657-78.
    Pubmed CrossRef
  59. Marques FD, Barbosa PH, Alves PR, et al. Anterior knee pain after anterior cruciate ligament reconstruction. Orthop J Sports Med 2020;8:2325967120961082.
    Pubmed KoreaMed CrossRef
  60. Pinto FG, Thaunat M, Daggett M, et al. Hamstring contracture after ACL reconstruction is associated with an increased risk of cyclops syndrome. Orthop J Sports Med 2017;5:2325967116684121.
    Pubmed KoreaMed CrossRef
  61. Wilk KE, Arrigo CA. Rehabilitation principles of the anterior cruciate ligament reconstructed knee: twelve steps for successful progression and return to play. Clin Sports Med 2017;36:189-232.
    Pubmed CrossRef
  62. Kotsifaki R, Korakakis V, King E, et al. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction. Br J Sports Med 2023;57:500-14.
    Pubmed CrossRef
  63. Lin PE, Sigward SM. Influence of hamstrings on knee moments during loading response of gait in individuals following ACL reconstruction. J Orthop Res 2020;38:378-86.
    Pubmed CrossRef
  64. Harput G, Howard JS, Mattacola C. Comparison of muscle activation levels between healthy individuals and persons who have undergone anterior cruciate ligament reconstruction during different phases of weight-bearing exercises. J Orthop Sports Phys Ther 2016;46:984-92.
    Pubmed CrossRef
  65. Wright RW, Preston E, Fleming BC, et al. A systematic review of anterior cruciate ligament reconstruction rehabilitation: part I. Continuous passive motion, early weight bearing, postoperative bracing, and home-based rehabilitation. J Knee Surg 2008;21:217-24.
    Pubmed KoreaMed CrossRef
  66. MARS Group. Rehabilitation predictors of clinical outcome following revision ACL reconstruction in the MARS Cohort. J Bone Joint Surg Am 2019;101:779-86.
    Pubmed KoreaMed CrossRef
  67. Fan Z, Yan J, Zhou Z, et al. Delayed versus accelerated weight-bearing rehabilitation protocol following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. J Rehabil Med 2022;54:jrm00260.
    Pubmed KoreaMed CrossRef
  68. Tyler TF, McHugh MP, Gleim GW, Nicholas SJ. The effect of immediate weightbearing after anterior cruciate ligament reconstruction. Clin Orthop Relat Res :141-8.
    Pubmed CrossRef
  69. Tajima T, Yamaguchi N, Nagasawa M, Morita Y, Nakamura Y, Chosa E. Early weight-bearing after anterior cruciate ligament reconstruction with hamstring grafts induce femoral bone tunnel enlargement: a prospective clinical and radiographic study. BMC Musculoskelet Disord 2019;20:274.
    Pubmed KoreaMed CrossRef
  70. Rizer M, Foremny GB, Rush A, et al. Anterior cruciate ligament reconstruction tunnel size: causes of tunnel enlargement and implications for single versus two-stage revision reconstruction. Skeletal Radiol 2017;46:161-9.
    Pubmed CrossRef
  71. Buckthorpe M, La Rosa G, Villa FD. Restoring knee extensor strength after anterior cruciate ligament reconstruction: a clinical commentary. Int J Sports Phys Ther 2019;14:159-72.
    Pubmed KoreaMed CrossRef
  72. Bodkin S, Goetschius J, Hertel J, Hart J. Relationships of muscle function and subjective knee function in patients after ACL reconstruction. Orthop J Sports Med 2017;5:2325967117719041.
    Pubmed KoreaMed CrossRef
  73. Zwolski C, Schmitt LC, Quatman-Yates C, Thomas S, Hewett TE, Paterno MV. The influence of quadriceps strength asymmetry on patient-reported function at time of return to sport after anterior cruciate ligament reconstruction. Am J Sports Med 2015;43:2242-9.
    Pubmed CrossRef
  74. Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW. Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am 1995;77:1166-73.
    Pubmed CrossRef
  75. Lewek M, Rudolph K, Axe M, Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2002;17:56-63.
    CrossRef
  76. Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train 2013;48:610-20.
    Pubmed KoreaMed CrossRef
  77. Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med 2015;43:1662-9.
    Pubmed KoreaMed CrossRef
  78. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 2016;50:804-8.
    Pubmed KoreaMed CrossRef
  79. Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med 1991;19:332-6.
    Pubmed CrossRef
  80. Harput G, Kilinc HE, Ozer H, Baltaci G, Mattacola CG. Quadriceps and hamstring strength recovery during early neuromuscular rehabilitation after ACL hamstring-tendon autograft reconstruction. J Sport Rehabil 2015;24:398-404.
    Pubmed CrossRef
  81. Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil 2000;9:135-59.
    CrossRef
  82. Buckthorpe M, Gokeler A, Herrington L, et al. Optimising the early-stage rehabilitation process post-ACL reconstruction. Sports Med 2024;54:49-72.
    Pubmed CrossRef
  83. Hopkins J, Ingersoll CD, Edwards J, Klootwyk TE. Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train 2002;37:25-31.
  84. Binder-Macleod SA, Halden EE, Jungles KA. Effects of stimulation intensity on the physiological responses of human motor units. Med Sci Sports Exerc 1995;27:556-65.
    Pubmed CrossRef
  85. Trimble MH, Enoka RM. Mechanisms underlying the training effects associated with neuromuscular electrical stimulation. Phys Ther 1991;71:273-82.
    Pubmed CrossRef
  86. Cho SI, Kim JW, Nam SS, Moon HW, Jung WS. Effects of a rehabilitation exercise program using electro muscle stimulation following anterior cruciate ligament reconstruction on the circumference, activity, and function of the quadriceps muscle. Appl Sci 2023;13:4153.
    CrossRef
  87. Hauger AV, Reiman MP, Bjordal JM, Sheets C, Ledbetter L, Goode AP. Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surg Sports Traumatol Arthrosc 2018;26:399-410.
    Pubmed CrossRef
  88. Cognetti DJ, Sheean AJ, Owens JG. Blood flow restriction therapy and its use for rehabilitation and return to sport: physiology, application, and guidelines for implementation. Arthrosc Sports Med Rehabil 2022;4:e71-6.
    Pubmed KoreaMed CrossRef
  89. Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand 2003;74:62-8.
    Pubmed CrossRef
  90. Wengle L, Migliorini F, Leroux T, Chahal J, Theodoropoulos J, Betsch M. The effects of blood flow restriction in patients undergoing knee surgery: a systematic review and meta-analysis. Am J Sports Med 2022;50:2824-33.
    Pubmed KoreaMed CrossRef
  91. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med 2017;51:1003-11.
    Pubmed CrossRef
  92. Jacobs E, Rolnick N, Wezenbeek E, et al. Investigating the autoregulation of applied blood flow restriction training pressures in healthy, physically active adults: an intervention study evaluating acute training responses and safety. Br J Sports Med 2023;57:914-20.
    Pubmed CrossRef
  93. Hughes L, Rosenblatt B, Gissane C, Paton B, Patterson SD. Interface pressure, perceptual, and mean arterial pressure responses to different blood flow restriction systems. Scand J Med Sci Sports 2018;28:1757-65.
    Pubmed CrossRef
  94. Culvenor AG, Girdwood MA, Juhl CB, et al. Rehabilitation after anterior cruciate ligament and meniscal injuries: a best-evidence synthesis of systematic reviews for the OPTIKNEE consensus. Br J Sports Med 2022;56:1445-53.
    Pubmed KoreaMed CrossRef
  95. Beynnon B, Howe JG, Pope MH, Johnson RJ, Fleming BC. The measurement of anterior cruciate ligament strain in vivo. Int Orthop 1992;16:1-12.
    Pubmed CrossRef
  96. Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstr철m PA, Pope MH. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 1995;23:24-34.
    Pubmed CrossRef
  97. Beynnon BD, Johnson RJ, Naud S, et al. Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind investigation evaluating knee joint laxity using roentgen stereophotogrammetric analysis. Am J Sports Med 2011;39:2536-48.
    Pubmed CrossRef
  98. Perry MC, Morrissey MC, King JB, Morrissey D, Earnshaw P. Effects of closed versus open kinetic chain knee extensor resistance training on knee laxity and leg function in patients during the 8- to 14-week post-operative period after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2005;13:357-69.
    Pubmed CrossRef
  99. Beynnon BD, Uh BS, Johnson RJ, et al. Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals. Am J Sports Med 2005;33:347-59.
    Pubmed CrossRef
  100. Fleming BC, Oksendahl H, Beynnon BD. Open- or closed-kinetic chain exercises after anterior cruciate ligament reconstruction? Exerc Sport Sci Rev 2005;33:134-40.
    Pubmed CrossRef
  101. Tagesson S, Oberg B, Kvist J. Tibial translation and muscle activation during rehabilitation exercises 5 weeks after anterior cruciate ligament reconstruction. Scand J Med Sci Sports 2010;20:154-64.
    Pubmed CrossRef
  102. Burd NA, West DW, Staples AW, et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 2010;5:e12033.
    Pubmed KoreaMed CrossRef
  103. Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sports Exerc 2016;48:337-45.
    Pubmed CrossRef
  104. Buckthorpe M, Danelon F, La Rosa G, Nanni G, Stride M, Della Villa F. Recommendations for hamstring function recovery after ACL reconstruction. Sports Med 2021;51:607-24.
    Pubmed CrossRef
  105. Bourne MN, Bruder AM, Mentiplay BF, Carey DL, Patterson BE, Crossley KM. Eccentric knee flexor weakness in elite female footballers 1-10 years following anterior cruciate ligament reconstruction. Phys Ther Sport 2019;37:144-9.
    Pubmed CrossRef
  106. Johnston PT, Feller JA, McClelland JA, Webster KE. Strength deficits and flexion range of motion following primary anterior cruciate ligament reconstruction differ between quadriceps and hamstring autografts. J ISAKOS 2021;6:88-93.
    Pubmed CrossRef
  107. Carofino B, Fulkerson J. Medial hamstring tendon regeneration following harvest for anterior cruciate ligament reconstruction: fact, myth, and clinical implication. Arthroscopy 2005;21:1257-65.
    Pubmed CrossRef
  108. Ristanis S, Tsepis E, Giotis D, Stergiou N, Cerulli G, Georgoulis AD. Electromechanical delay of the knee flexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 2009;37:2179-86.
    Pubmed CrossRef
  109. Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med 2019;49:1043-58.
    Pubmed CrossRef
  110. Herrington L, Myer G, Horsley I. Task based rehabilitation protocol for elite athletes following Anterior Cruciate ligament reconstruction: a clinical commentary. Phys Ther Sport 2013;14:188-98.
    Pubmed CrossRef
  111. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 2016;44:355-61.
    Pubmed CrossRef
  112. Davis IS, Powers CM. Patellofemoral pain syndrome: proximal, distal, and local factors, an international retreat, April 30-May 2, 2009, Fells Point, Baltimore, MD. J Orthop Sports Phys Ther 2010;40:A1-A16.
    Pubmed CrossRef
  113. Vakos JP, Nitz AJ, Threlkeld AJ, Shapiro R, Horn T. Electromyographic activity of selected trunk and hip muscles during a squat lift. Effect of varying the lumbar posture. Spine (Phila Pa 1976) 1994;19:687-95.
    Pubmed CrossRef
  114. Reider B, Arcand MA, Diehl LH, et al. Proprioception of the knee before and after anterior cruciate ligament reconstruction. Arthroscopy 2003;19:2-12.
    Pubmed CrossRef
  115. Borsa PA, Lephart SM, Irrgang JJ, Safran MR, Fu FH. The effects of joint position and direction of joint motion on proprioceptive sensibility in anterior cruciate ligament-deficient athletes. Am J Sports Med 1997;25:336-40.
    Pubmed CrossRef
  116. Al-Dadah O, Shepstone L, Donell ST. Proprioception analysis following anterior cruciate ligament reconstruction using stabilometry: a prospective, longitudinal study. Rev Bras Ortop (Sao Paulo) 2023;58:417-27.
    Pubmed KoreaMed CrossRef
  117. Hewett TE, Paterno MV, Myer GD. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin Orthop Relat Res :76-94.
    Pubmed CrossRef
  118. Noyes FR, Barber-Westin SD. Neuromuscular retraining in female adolescent athletes: Effect on athletic performance indices and noncontact anterior cruciate ligament injury rates. Sports 2015;3:56-76.
    CrossRef
  119. Beischer S, Gustavsson L, Senorski EH, et al. Young athletes who return to sport before 9 months after anterior cruciate ligament reconstruction have a rate of new injury 7 times that of those who delay return. J Orthop Sports Phys Ther 2020;50:83-90.
    Pubmed CrossRef
  120. Gokeler A, Welling W, Zaffagnini S, Seil R, Padua D. Development of a test battery to enhance safe return to sports after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2017;25:192-9.
    Pubmed KoreaMed CrossRef
  121. Rambaud AJ, Ardern CL, Thoreux P, Regnaux JP, Edouard P. Criteria for return to running after anterior cruciate ligament reconstruction: a scoping review. Br J Sports Med 2018;52:1437-44.
    Pubmed CrossRef
  122. Hurley ET, Mojica ES, Haskel JD, et al. Return to play testing following anterior cruciate reconstruction: a systematic review & meta-analysis. Knee 2022;34:134-40.
    Pubmed CrossRef
  123. Turk R, Shah S, Chilton M, et al. Return to sport after anterior cruciate ligament reconstruction requires evaluation of >2 functional tests, psychological readiness, quadriceps/hamstring strength, and time after surgery of 8 months. Arthroscopy 2023;39:790-801.
    Pubmed CrossRef