search for



Effects of Short-term Repeated Sprint Exercise Training and Moderate Intensity Continuous Exercise Training on Vascular Function in Healthy Young Adults
Korean J Sports Med 2024;42:136-144
Published online June 1, 2024;  https://doi.org/10.5763/kjsm.2024.42.2.136
© 2024 The Korean Society of Sports Medicine.

Hye Rim Hong1, Ye Ji Choi1, Tae Gu Choi1, Jae Yeop Kim1, Yun Wook Kim1, Yong Joon Jung1, Min Jeong Cho1, Hyun Jeong Kim1, Sae Young Jae1,2

1Department of Sport Science, University of Seoul, Seoul, 2Division of Urban Social Health, Graduate School of Urban Public Health, University of Seoul, Seoul, Korea
Correspondence to: Sae Young Jae
Department of Sport Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea
Tel: +82-2-6490-2953, Fax: +82-2-6490-2949, E-mail: syjae@uos.ac.kr
Received January 22, 2024; Revised February 23, 2024; Accepted March 6, 2024.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract
Purpose: Moderate-intensity continuous training (MICT) improves exercise capacity with vascular benefits, but time constraints hinder consistent adherence. High-intensity interval training (HIIT) has emerged as a time-efficient alternative, with repeated sprint training (RST) being the shortest format. We hypothesized that RST would be as effective as MICT in improving vascular function and exercise capacity in young adults.
Methods: Twenty-three adults (mean age, 26.2±3.8 years) were randomly assigned to either RST or MICT. RST involved 20 sets of 4-second cycling sprints followed by 30-second active recovery, totaling 11 minutes. MICT consisted of 30-minute cycling at 50% to 60% of heart rate reserve. Vascular function evaluated via brachial artery flow-mediated dilation. Exercise capacity (maximum oxygen uptake, total exercise load test time) and anaerobic capacity (maximum power, anaerobic threshold) were measured using maximum exercise tests. These variables were measured befre and after a 6-week training.
Results: Both groups showed comparable improvements in flow-mediated dilation (p< 0.05). Maximum oxygen intake slightly improved, while total exercise time significantly increased for both (p< 0.05). Anaerobic threshold unchanged, while maximum power improved (p< 0.05).
Conclusion: These findings underscore that RST is a time-efficient exercise strategy, which improves vascular function and exercise capacity as effectively as MICT in young adults.
Keywords : Exercise, High-intensity interval training, Vasodilation
꽌 濡

洹쒖튃쟻씤 떊泥댄솢룞 愿긽룞留μ쭏솚怨 媛숈 떖삁愿 吏덊솚쓣 슚怨쇱쟻쑝濡 삁諛⑺븷 닔 엳떎. 쁽옱 꽦씤쓣 쐞븳 떊泥댄솢룞 吏移⑥ 二쇰떦 理쒖냼 150遺 씠긽쓽 以묎컯룄 떊泥댄솢룞쓣 沅뚭퀬븯怨 엳吏留1, 슦由щ굹씪 援誘쇱쓽 젅諛 씠긽씠 씠윭븳 沅뚭퀬웾뿉 紐 誘몄튂怨 엳쑝硫2, 媛옣 겙 씠쑀濡 떆媛 遺議깆씠 瑗쏀삍떎3. 슫룞뿉 李몄뿬븯吏 紐삵븯뒗 媛옣 겙 옣븷臾쇱씠 떆媛 遺議깆엫쓣 怨좊젮븷 븣 씠윭븳 臾몄젣뿉 슚怨쇱쟻쑝濡 泥섑븷 닔 엳뒗 슫룞 쟾왂씠 븘슂븯떎.

洹몃윭븳 씠쑀뿉꽌 떆媛 슚쑉쟻씤 슫룞 諛⑸쾿씤 怨좉컯룄 씤꽣踰 듃젅씠떇(high-intensity interval training, HIIT)씠 二쇰ぉ諛쏄퀬 엳떎4. HIIT뒗 씪諛섏쟻쑝濡 5–150珥 룞븞 理쒕뿉 媛源뚯슫 怨좉컯룄쓽 슫룞쓣 닔룞쟻 샊 뒫룞쟻 쑕떇쓣 룷븿븯뿬 븳 꽭뀡떦 20遺 궡쇅濡 떎떆븯뒗 寃껋씠 듅吏뺤씠떎4. 肉먮쭔 븘땲씪 以묎컯룄 吏냽쟻 슫룞(moderate-intensity continuous training, MICT)蹂대떎 삁瑜섎 珥됱쭊븯怨 삁愿 궡 쟾떒쓳젰쓣 媛뺥솕븯뿬 슫룞 뒫젰 뼢긽怨 떖옣 궗 쐞뿕씤옄 媛쒖꽑, 洹몃━怨 빆궛솕 닔以쓣 利앷븯硫 삁愿 궡뵾꽭룷 湲곕뒫쓣 뜑 슚怨쇱쟻쑝濡 媛쒖꽑븳떎뒗 뿰援 寃곌낵媛 젣떆릺怨 엳떎4. 븯吏留 뿬쟾엳 20遺 씠긽쓽 슫룞 吏냽 떆媛꾩 슫룞 李몄뿬뿉 젣븳슂냼媛 맆 닔룄 엳쓣 寃껋씠떎.

理쒓렐 HIIT 以묒뿉꽌룄 媛뺣룄媛 뜑 넂怨 理쒖냼 떆媛꾩쑝濡 援ъ꽦맂 諛섎났 뒪봽由고듃 듃젅씠떇(repeated sprint training, RST)씠 二쇰ぉ諛쏄퀬 엳떎5. RST뒗 3–7珥 룞븞 ‘all-out’쓽 媛뺣룄濡 뒪봽由고듃븳 썑 60珥 誘몃쭔쓽 쑕떇 떆媛꾩쓣 媛吏뒗 寃껋쓣 諛섎났븯뒗 吏㏃ 떆媛꾩쓽 HIIT濡, 슫룞꽑닔뱾쓣 쐞븳 蹂듯빀 썕젴 쟾왂쑝濡 냼媛쒕릺뿀떎5. 꽑뻾 뿰援ъ뿉꽌 嫄닿컯븳 꽦씤쓣 긽쑝濡 RST瑜 쟻슜븳 寃곌낵, 泥대젰 뼢긽뿉 슚怨쇱쟻씠硫 븞쟾븯떎뒗 寃껋씠 젣떆릺뿀떎6.

洹몃윭굹 씠윭븳 RST媛 삁愿 湲곕뒫뿉 뼱뼚븳 쁺뼢쓣 誘몄튂뒗吏뒗 遺덈챸솗븯怨 愿젴 뿰援щ룄 留ㅼ슦 遺議깊븯떎. 듅엳 珥덇퀬媛뺣룄 슫룞뿉 빐떦븯뒗 RST MICT媛 삁愿 湲곕뒫 媛쒖꽑뿉 誘몄튂뒗 쁺뼢쓣 鍮꾧탳븳 뿰援щ뒗 嫄곗쓽 뾾떎.

理쒓렐 6二 씠븯쓽 떒湲곌컙 HIIT쓽 嫄닿컯 媛쒖꽑 슚怨쇱뿉 븳 뿰援щ뱾씠 蹂닿퀬릺怨 엳쑝硫7, 룞臾 떎뿕 뿰援ъ뿉꽌뒗 떒湲곌컙(6二) HIIT瑜 넻빐 삁愿궡뵾 궛솕吏덉냼쓽 깮泥 씠슜瑜좎쓣 利앷떆耳 以묒떖 룞留 寃쎌쭅룄媛 媛먯냼븷 닔 엳쑝硫, 씠뒗 룞씪 湲곌컙쓽 MICT 媛숈 슚怨쇰 굹궦떎怨 蹂닿퀬뻽떎8.

씠뿉 諛섑빐 씪遺 뿰援ъ뿉꽌뒗 떒湲곌컙쓽 슫룞쑝濡 떖삁愿怨 쐞뿕씤옄 媛쒖꽑 슚怨쇰 뼸湲곌 뼱졄떎怨 젣떆븯怨 엳뼱9 씠뿉 븳 異붽쟻씤 뿰援ш 븘슂븯떎. 뵲씪꽌 蹂 뿰援щ뒗 6二쇨컙쓽 떒湲곌컙 RST媛 MICT留뚰겮 삁愿 湲곕뒫 媛쒖꽑 슚怨쇨 엳뒗吏 븣븘蹂닿퀬옄 븯떎.

뿰援 諛⑸쾿

1. 뿰援 긽

蹂 뿰援щ뒗 꽌슱떆由쎈븰援 援먮궡뿉 뿰援 李몄뿬옄 솉蹂대Ъ쓣 遺李⑺븯뿬 20–39꽭쓽 嫄닿컯븳 꽦씤 궓 29紐낆쓣 紐⑥쭛븯쑝硫, 洹몄쨷 떆媛꾩긽쓽 臾몄젣濡 6紐낆씠 以묐룄뿉 븯李⑦븯뿬 珥 23紐낆씠 뿰援ъ뿉 李몄뿬븯떎. 紐⑥쭛맂 긽옄뿉寃 湲곗큹 꽕臾몄瑜 넻빐 媛쒖씤 諛 媛議 蹂묐젰, 쁽옱 蹂듭슜 以묒씤 빟臾, 떊泥댄솢룞 닔以쓣 議곗궗븯떎. 湲곗큹 議곗궗뿉꽌 떖삁愿怨 吏덊솚, 洹쇨낏寃⑷퀎 吏덊솚, 궗꽦 吏덊솚씠 엳뒗 옄 삉뒗 씠 愿젴븳 빟臾쇱쓣 蹂듭슜븯怨 엳뒗 옄뒗 蹂 뿰援ъ쓽 젣쇅 긽쑝濡, 寃넗 썑 理쒖쥌쟻쑝濡 23紐낆씠 뿰援ъ뿉 李몄뿬븯떎. 뿰援 긽옄뿉寃 蹂 뿰援ъ쓽 궡슜怨 紐⑹쟻쓣 異⑸텇엳 꽕紐낇븳 썑 뿰援 李몄뿬 룞쓽꽌瑜 옉꽦븯떎. 蹂 뿰援ъ쓽 紐⑤뱺 젅李⑤뒗 꽌슱떆由쎈븰援 깮紐낆쑄由ъ쐞썝쉶쓽 듅씤쓣 諛쏆븘 吏꾪뻾븯떎(No. UOS-IRB-2022-05-006).

2. 뿰援 꽕怨 諛 젅李

蹂 뿰援щ뒗 젣鍮꾨퐨湲곕 씠슜븯뿬 긽옄뱾쓣 RST 洹몃9 삉뒗 MICT 洹몃9뿉 臾댁옉쐞濡 諛곗튂븯뒗 뿰援 꽕怨(randomized design)濡 RST 洹몃9 12紐(궓옄 6紐, 뿬옄 6紐), MICT 洹몃9 11紐(궓옄 6紐, 뿬옄 5紐)쑝濡 吏꾪뻾븯떎. 紐⑤뱺 슫룞 듃젅씠떇 씪二쇱씪뿉 3씪, 6二 룞븞 떎떆븯怨, 湲곌컙 궡뿉 珥 18踰덉쓽 슫룞쓣 븯떎.

醫낆냽蹂씤뿉 쁺뼢쓣 誘몄튂뒗 샎 蹂닔쓽 쁺뼢쓣 理쒖냼솕븯湲 쐞빐 긽옄뱾 痢≪젙 떦씪 1씪(24떆媛) 쟾遺꽣 寃⑸젹븳 슫룞쓣 젣븳븯怨 8떆媛 씠긽 怨듬났 긽깭瑜 쑀吏븯怨 븣肄붿삱, 移댄럹씤 씉뿰쓣 궪媛룄濡 吏떆븯떎. 紐⑤뱺 醫낆냽蹂씤 痢≪젙 듃젅씠떇 쟾(baseline)怨 썑濡 珥 2쉶 떎떆븯떎. 쟾泥댁쟻씤 떎뿕 꽕怨꾨뒗 Fig. 1뿉 젣떆븯떎.

Fig. 1. Experimental design. HRR: heart rate reserve.

1) 諛섎났 뒪봽由고듃 듃젅씠떇

RST뒗 Satiroglu 벑6쓽 뿰援ъ뿉꽌 궗슜븳 봽濡쒗넗肄쒖쓣 蹂삎븯뿬 쟻슜븯떎. RST 泥섏튂뿉 빐떦릺뒗 긽옄뒗 떦룄媛 寃利앸맂 Watt Bike瑜 씠슜븯뿬10 紐몃Т寃, 꽦蹂 鍮 沅뚯옣 遺븯瑜 꽕젙븯怨 ‘all-out’쓽 媛뺣룄濡 4珥 룞븞 뒪봽由고듃瑜 븳 썑 30珥 룞븞 臾대븯 뒫룞쟻 쉶蹂듭쓣 븯뒗 寃껋쓣 20踰 諛섎났 닔뻾븯쑝硫 슫룞 떆媛꾩 빟 11遺 20珥 냼슂릺뿀떎. 蹂 슫룞 쟾怨 썑뿉 沅뚯옣 遺븯뿉꽌 50–60 rpm쑝濡 5遺꾧컙 以鍮꾩슫룞怨 젙由ъ슫룞쓣 떎떆븯떎.

2) 以묎컯룄 吏냽쟻 듃젅씠떇

MICT뒗 옄쟾嫄 뿉瑜닿퀬誘명꽣瑜 씠슜븯뿬 떎떆븯떎. 以鍮꾩슫룞 5遺꾧컙 떎떆븯怨 留덉留 4遺꾨뿉뒗 誘몃━ 꽕젙맂 媛쒖씤쓽 紐⑺몴 떖諛뺤닔뿉 떎떎瑜 닔 엳룄濡 遺븯瑜 議곗젅븯떎. 蹂 슫룞 슫룞遺븯 떖룓湲곕뒫 痢≪젙뿉꽌 뼸 理쒕 떖諛뺤닔 븞젙 떆 떖諛뺤닔瑜 씠슜븯뿬 移대낫꽙(Karvonen) 怨듭떇쑝濡 怨꾩궛븳 뿬쑀 떖諛뺤닔쓽 50%–60%쓽 媛뺣룄濡 30遺꾧컙 떎떆븯떎11. 슫룞 以 rpm 媛믪 湲곕낯쟻쑝濡 50–60 rpm쑝濡 쑀吏븯吏留 떖諛뺤닔 젙룄뿉 뵲씪꽌 怨좎瑜 議곗젅븯떎. 슫룞 以 떖諛뺤닔뒗 臾댁꽑 떖諛뺣룞 옣鍮(TICKR 2, Wahoo Fitness)瑜 씠슜븯뿬 솗씤븯떎.

3. 痢≪젙 빆紐 諛 痢≪젙 諛⑸쾿

1) 떊泥 議곗꽦

닔룞떊옣怨(Aluminum extensometer, Samwha Electric) 뵒吏꽭 泥댁쨷怨(X19, CAS)瑜 궗슜븯뿬 떊옣怨 泥댁쨷쓣 痢≪젙븯떎. 泥댁諛⑸쪧(percent body fat) 諛 젣吏諛⑸쪧(lean body mass), 怨④꺽 洹쇰웾(skeleton muscle mass)怨 媛숈 떊泥 議곗꽦 蹂닔뱾 깮泥댁쟾湲 빆踰(BWA 2.0, InBody)쓣 궗슜븯뿬 痢≪젙븯떎.

2) 떖諛뺤닔 삁븬

떖諛뺤닔 긽셿룞留 삁븬 10遺꾧컙 늻슫 긽깭뿉꽌 븞젙쓣 痍⑦븳 썑, 옄룞 삁븬怨(JPN601, OMRON Healthcare Inc.)瑜 씠슜븯뿬 痢≪젙븯떎. 떖諛뺤닔 삁븬 珥 2쉶 痢≪젙븯뿬 룊洹좉컪쓣 씠슜븯怨, 痢≪젙 떆媛 媛꾧꺽 2遺꾩쑝濡 븯떎. 1李⑥ 2李 痢≪젙 媛꾩쓽 삤李④ 겢 寃쎌슦(>10 mm Hg) 1쉶 異붽 痢≪젙븯뿬 룊洹좉컪쓣 옄猷뚮줈 씠슜븯떎.

3) 긽셿룞留 궡뵾꽭룷 쓽議댁꽦 삁愿씠셿뒫

긽셿룞留 궡뵾꽭룷 쓽議댁꽦 삁愿씠셿뒫(flow-mediated dilation) 痢≪젙 솗由쎈맂 吏移⑥뿉 뵲씪 닔뻾븯떎12. 삤瑜명뙏 쟾셿遺뿉 삁븬 而ㅽ봽瑜 諛곗튂븯怨 珥덉쓬뙆 깘珥됱옄瑜 삤瑜명뙏 뙏삤湲 洹쇱쐞 3–5 cm 긽셿뿉 쐞移섑븯떎. 룄뵆윭 紐⑤뱶뿉꽌 湲곗 긽셿룞留 吏곴꼍(baseline diameter)쓣 1遺 룞븞 湲곕줉븳 썑, 삁븬 而ㅽ봽瑜 5遺 룞븞 250 mm Hg濡 뙺李쎌떆궎怨 而ㅽ봽瑜 0 mm Hg濡 媛먯븬븳 뮘 3遺 룞븞 뿰냽쟻쑝濡 뜲씠꽣瑜 痢≪젙븯떎. 삁愿 吏곴꼍(diameter)怨 룊洹 삁븸 냽룄뒗 떎떆媛 삁愿 吏곴꼍 깘吏 냼봽듃썾뼱(FMD Studio, Quipu srl)瑜 궗슜븯뿬 옣 썑 삤봽씪씤쑝濡 遺꾩꽍븯떎. FMD뒗 湲곗 긽셿 룞留 吏곴꼍뿉꽌 理쒕 吏곴꼍媛(maximal diameter)쓽 利앷 諛깅텇쑉(FMD%)濡 怨꾩궛븯떎.

4) 슫룞遺븯 떖룓湲곕뒫

쑀궛냼꽦 뒫젰 옄쟾嫄 뿉瑜닿퀬誘명꽣瑜 씠슜븳 理쒕 슫룞遺븯 떖룓湲곕뒫 寃궗瑜 넻빐 痢≪젙븯떎. 痢≪젙 쟾 븞硫 留덉뒪겕 李⑹슜 썑 5遺 젙룄 쑕떇쓣 痍⑦븯硫 떎뿕 옣鍮꾩뿉 쟻쓳븯룄濡 븳 썑 臾대븯뿉꽌 以鍮꾩슫룞쓣 3遺꾧컙 떎떆븯떎. 슫룞遺븯寃궗 봽濡쒗넗肄쒖 1遺 媛꾧꺽쑝濡 궓옄 20 W, 뿬옄 15 W媛 利앷릺뒗 닔젙맂 Ramp 봽濡쒗넗肄쒖쓣 궗슜븯떎13. 슫룞遺븯寃궗뒗 긽옄쓽 理쒕 슫룞 뒫젰源뚯 吏냽븯怨, 떎뿕 以묐떒 湲곗 긽옄媛 뜑 씠긽 슫룞쓣 吏냽븷 닔 뾾떎怨 뒓猿 룷湲 쓽궗瑜 몴떆븷 寃쎌슦, 샇씉 援먰솚쑉(respiratory exchange ratio)씠 1.15 씠긽씪 寃쎌슦, 삉뒗 슫룞 媛뺣룄媛 利앷븿뿉룄 遺덇뎄븯怨 궛냼꽠痍⑤웾씠 怨좎썝 긽깭瑜 쑀吏븯嫄곕굹 媛먯냼븳 寃쎌슦濡 븯떎. 떖룓湲곕뒫 吏몴뒗 슫룞遺븯寃궗 떆뒪뀥(Q-Stress, Quinton Cardiology Systems, Inc.)怨 옄쟾嫄 뿉瑜닿퀬誘명꽣(Lode BV Medical Technology), 洹몃━怨 샇씉媛뒪 遺꾩꽍 옣鍮(TrueOne 2400, ParvoMedics) 옣鍮꾨 씠슜븯뿬 痢≪젙븯떎. 理쒕 궛냼꽠痍⑤웾(VO2peak)怨 理쒕 떖諛뺤닔(heart rate max)뒗 떎뿕 以묐떒 떆젏쓽 媛믪쑝濡 寃곗젙븯怨, 샇씉 援먰솚쑉 VCO2/VO2濡 怨꾩궛븯떎. 臾댁궛냼꽦 뿭移(anaerobic threshold)뒗 슫룞 以 씠궛솕깂냼 깮꽦웾怨 궛냼꽠痍⑤웾쓽 湲곗슱湲곕 씠슜븯뿬 寃곗젙븯뒗 V-slope 諛⑸쾿14쓣 씠슜븯뿬 寃곗젙븯떎. 理쒕 뙆썙(W)뒗 떎뿕 以묐떒 떆젏쓽 stage 뙆썙뿉 빐떦븯뒗 媛믪쑝濡 寃곗젙븯怨, 슫룞 떆媛꾩 warming-up 떆媛꾩쓣 젣쇅븯怨 슫룞遺븯寃궗 떆뒪뀥뿉 湲곕줉맂 슫룞 以묐떒 떆媛꾧퉴吏濡 寃곗젙븯떎.

4. 옄猷 泥섎━

蹂 뿰援ъ뿉꽌 痢≪젙맂 紐⑤뱺 옄猷뚮뒗 룊洹±몴以 렪李⑤줈 몴떆븯떎. 떎뿕쓣 吏꾪뻾븯湲곗뿉 븵꽌, 룆由 몴蹂 t-test瑜 떎떆븯뿬 吏묐떒媛꾩쓽 룞吏덉꽦쓣 寃利앺븯쑝硫, Shaporo-Wilk 寃궗瑜 넻빐 젙洹쒖꽦 遺꾪룷瑜 솗씤븯떎. RST MICT뿉 뵲瑜 떆媛꾨퀎 醫낆냽蹂씤뱾쓽 蹂솕瑜 솗씤븯湲 쐞빐 洹몃9(RST, MICT)怨 痢≪젙 떆媛(궗쟾, 궗썑)쓣 룆由쎈씤쑝濡 븯뒗 2×2 諛섎났痢≪젙 씠썝諛곗튂 遺꾩궛遺꾩꽍(two-way anal-ysis of variance with repeated measures)쓣 떎떆븯떎. 紐⑤뱺 옄猷 泥섎━뒗 IBM SPSS for Windows version 27.0 (IBM Corp.) 봽濡쒓렇옩쓣 씠슜븯쑝硫, 쑀쓽 닔以 α<0.05濡 寃젙븯떎.

寃 怨

몢 洹몃9쓽 떊泥댁쟻 듅꽦 Table 1뿉 굹궡뿀떎. 6二쇨컙쓽 듃젅씠떇 썑 몢 洹몃9 紐⑤몢 떊泥 議곗꽦怨 삁븬뿉 쑀쓽븳 蹂솕뒗 굹굹吏 븡븯떎(p>0.05) (Tables 2 and 3). 븞젙 떆 떖諛뺤닔뒗 긽샇옉슜 슚怨쇰뒗 굹굹吏 븡븯쑝굹, 6二 듃젅씠떇 썑뿉 몢 洹몃9 紐⑤몢 넻怨꾩쟻쑝濡 쑀쓽븳 媛먯냼 슚怨쇰 蹂댁떎(time effect, p=0.036) (Table 3, Fig. 2). 긽셿룞留 삁愿 궡뵾꽭룷 쓽議댁꽦 씠셿뒫뿉꽌뒗 긽샇옉슜 슚怨쇰뒗 굹굹吏 븡븯쑝굹, RST 洹몃9뿉꽌 빟 1.6%, MICT 洹몃9뿉꽌 빟 1.1%뵫 利앷븯뿬 넻怨꾩쟻쑝濡 쑀쓽븳 蹂솕媛 굹궗떎(time effect, p=0.036) (Fig. 3). 쑀궛냼꽦 뒫젰(VO2peak) 몢 洹몃9 紐⑤몢 利앷븯뒗 寃쏀뼢쓣 蹂댁쑝굹 넻怨꾩쟻쑝濡 쑀쓽븯吏 븡븯怨(p=0.335), 臾댁궛냼꽦 뿭移 삉븳 쑀쓽븳 蹂솕媛 굹굹吏 븡븯떎(Table 4). 洹몃윭굹 슫룞遺븯寃궗 떆 理쒕 뙆썙뿉꽌뒗 긽샇옉슜 슚怨쇰뒗 뾾뿀쑝굹, 몢 洹몃9 紐⑤몢 利앷븯뿬 넻怨꾩쟻쑝濡 쑀쓽븳 蹂솕媛 굹궗떎(time effect, p<0.001) (Table 4, Fig. 4). 삉븳 슫룞遺븯寃궗 떆 깉吏꾧퉴吏 냼슂맂 떆媛꾩뿉꽌룄 긽샇옉슜 슚怨쇰뒗 굹굹吏 븡븯쑝굹, 몢 洹몃9 紐⑤몢뿉꽌 넻怨꾩쟻쑝濡 쑀쓽븳 蹂솕媛 굹궗떎(time effect, p=0.017) (Table 4, Fig. 5).

Table 1 . Subjects’ characteristics (n=23)

VariableRST groupMICT group p-value
No. of subjects1211
Age (yr)26.50±4.3625.91±3.480.725
Height (cm)170.65±10.24168.81±9.000.655
Weight (kg)64.80±12.3966.28±12.010.775
Body fat (%)21.88±6.1022.04±12.170.491
Skeleton muscle mass (kg)28.18±6.0927.70±5.940.852
Lean body mass (kg)50.54±10.1149.88±9.680.875
Systolic BP (mm Hg)112.42±10.73113.64±12.400.803
Diastolic BP (mm Hg)70.50±4.8272.64±6.390.373

Values are presented as mean±standard deviation.

RST: repeated sprint training, MICT: moderate intensity continuous training, BP: blood pressure.


Table 2 . Subjects’ characteristics of the RST group and MICT group before and after exercise intervention

VariableRST group (n=12)MICT group (n=11)p-value
Baseline6 weeksBaseline6 weeks
Weight (kg)64.80±12.3965.35±12.2566.28±12.0165.98±12.780.839a
0.786b
0.226c
Body fat (%)21.88±6.1025.52±7.9022.04±12.1724.22±10.900.627a
0.822b
0.059c
Skeleton muscle mass (kg)28.18±6.0929.94±5.6527.70±5.9427.68±6.870.886a
0.715b
0.755c
Lean body mass (kg)50.54±10.1149.80±9.3949.88±9.6849.71±11.300.929a
0.419b
0.615c

Values are presented as mean±standard deviation.

RST: repeated sprint training, MICT: moderate intensity continuous training.

aInteraction effect (time×trial), btime effect, and ctrial effect.


Table 3 . Changes in hemodynamic from pre- to post-intervention

VariableRST group (n=12)MICT group (n=11)p-value
Baseline6 weeksBaseline6 weeks
Systolic BP (mm Hg)112.42±10.73113.83±13.02113.64±12.40111.91±10.630.942a
0.893b
0.182c
Diastolic BP (mm Hg)70.50±4.8272.08±6.6972.64±6.3970.82±8.590.865a
0.924b
0.178c
Resting heart rate (beat/min)63.21±7.7062.17±6.3564.68±7.8159.50±8.070.834a
0.036b*
0.150c

Values are presented as mean± standard deviation.

RST: repeated sprint training, MICT: moderate intensity continuous training, BP: blood pressure.

aInteraction effect (time×trial), btime effect, and ctrial effect. *p<0.05 from baseline.


Table 4 . Changes in aerobic and anaerobic capacity from pre- to post-intervention

VariablesRST group (n=12)MICT group (n=11)p-value
Baseline6 weeksBaseline6 weeks
VO2peak (mL/kg/min)34.95±7.4235.95±8.0733.14±8.9134.04±6.410.553a
0.335b
0.959c
AT (mL/kg/min)17.42±4.8517.45±4.5816.52±5.3816.95±5.430.730a
0.728b
0.766c
RER0.884±0.1070.853±0.0740.860±0.0970.839±0.0800.564a
0.203b
0.791c
Peak power (W)196.67±45.34218.75±48.11193.64±51.34207.27±54.050.726a
<0.001b*
0.244c
Exercise time (min)10.042±2.27110.593±2.60110.215±2.23710.832±2.2150.830a
0.017b*
0.887c

Values are presented as mean±standard deviation.

RST: repeated sprint training, MICT: moderate intensity continuous training, VO2peak: maximal oxygen uptake, AT: anaerobic threshold, RER: respiratory exchange ratio.

aInteraction effect (time×trial), btime effect, and ctrial effect. *p<0.05 from baseline.


Fig. 2. Changes in resting heart rate (beat/min) from pre- to post-intervention. RST: repeated sprint training, MICT: moderate intensity continuous training. p for time effect.
Fig. 3. Changes in flow-mediated dilation (%) from pre- to post-intervention. RST: repeated sprint training, MICT: moderate intensity continuous training. p for time effect.
Fig. 4. Changes in peak power (W) from pre- to post-intervention. RST: repeated sprint training, MICT: moderate intensity continuous training. p for time effect.
Fig. 5. Changes in exercise time (min) from pre- to post-intervention. RST: repeated sprint training, MICT: moderate intensity continuous training. p for time effect.
怨 李

蹂 뿰援щ뒗 떒湲곌컙 RST媛 MICT 쑀궗븳 떊泥 議곗꽦, 삁愿 湲곕뒫, 쑀·臾댁궛냼꽦 뒫젰쓽 媛쒖꽑쓣 媛졇삤뒗吏 븣븘蹂닿퀬옄 븯떎. 뿰援 寃곌낵, 6二쇨컙쓽 RST MICT 紐⑤몢 떊泥 議곗꽦쓽 쑀쓽븳 媛쒖꽑 굹굹吏 븡븯吏留, 삁愿 궡뵾꽭룷 湲곕뒫怨 슫룞 떆媛, 理쒕 臾댁궛냼꽦 뙆썙(peak power)媛 쑀쓽븯寃 媛쒖꽑릺뿀떎.

蹂 뿰援ъ뿉꽌 떒湲곌컙 RST뒗 MICT 쑀궗븯寃 삁愿 궡뵾꽭룷 쓽議댁꽦 씠셿뒫쓣 쑀쓽븯寃 媛쒖꽑븯떎. 洹몃룞븞 뿬윭 꽑뻾뿰援ъ뿉꽌 HIIT媛 삁愿 湲곕뒫쓣 媛쒖꽑븳떎怨 젣떆븯떎. 洹몃윭굹 듃젅씠떇 湲곌컙씠 湲 꽑뻾뿰援щ뱾뿉 鍮꾪빐 蹂 뿰援щ뒗 6二쇰씪뒗 긽쟻쑝濡 吏㏃ 듃젅씠떇 湲곌컙쑝濡 MICT 洹몃9怨 RST 洹몃9 紐⑤몢뿉꽌 삁愿 궡뵾꽭룷 쓽議댁꽦 씠셿뒫씠 빟 1.6% 媛쒖꽑릺뿀떎. 긽셿룞留 삁愿 궡뵾꽭룷 쓽議댁꽦 씠셿뒫쓽 1% 媛쒖꽑룄媛 떖삁愿 吏덊솚쓽 쐞뿕룄瑜 빟 13% 媛먯냼븯寃 븳떎뒗 꽑뻾뿰援 寃곌낵濡 誘몃(뼱 蹂댁븯쓣 븣15, 6二쇨컙쓽 RST媛 씪諛섏쟻씤 MICT留뚰겮 삁愿 湲곕뒫 媛쒖꽑뿉 湲곗뿬븷 닔 엳뒗 寃껋쑝濡 깮媛곷맂떎. 鍮꾨줉 蹂 뿰援ъ뿉꽌 RST媛 삁愿 궡뵾꽭룷 쓽議댁꽦 씠셿뒫쓣 媛쒖꽑븯뒗 湲곗쟾 痢≪젙븯吏 紐삵뻽吏留, 꽑뻾뿰援щ 넗濡 떎쓬怨 媛숈 湲곗쟾쓣 쑀異뷀븯뿬 젣떆븷 닔 엳떎. 슫룞 endothelin-1, 솢꽦궛냼醫 벑 삁愿 닔異뺤꽦 씤옄뱾쓣 媛먯냼떆궎怨 궛솕吏덉냼 媛숈 삁愿 솗옣꽦 臾쇱쭏뱾쓣 솢꽦솕븯뿬 삁愿 湲곕뒫쓣 媛쒖꽑븳떎16. 洹몃━怨 씠윭븳 궛솕吏덉냼쓽 깮꽦 슫룞 떆 諛쒖깮릺뒗 삁愿 궡 쟾떒쓳젰怨 愿젴씠 엳뒗뜲, 쟾떒쓳젰 꽭룷 궡쓽 移쇱뒛 梨꾨꼸쓣 솢꽦솕븯뿬 궛솕吏덉냼 빀꽦슚냼쓽 諛쒗쁽씠 利앷븳떎. 씠濡 씤빐 利앷븳 궛솕吏덉냼뒗 삁愿 룊솢洹쇱뿉꽌 cyclic guanosine monophosphate瑜 깮꽦븯怨, 씠뒗 꽭룷쓽 移쇱뒛 닔以쓣 議곗젅빐 궡뵾꽭룷 룊솢洹쇱쓣 닔異뺤떆궓떎17. 뵲씪꽌 슫룞쓣 넻븳 궛솕吏덉냼 깮꽦 삁愿 궡 궛솕吏덉냼쓽 깮泥 씠슜瑜좎쓣 넂씠怨 삁愿쓣 솗옣븳떎. 삉 씠윭븳 궛솕吏덉냼瑜 빀꽦븯湲 쐞븳 궛솕吏덉냼 빀꽦슚냼뒗 怨좉컯룄 슫룞 썑뿉 泥대궡뿉꽌 利앷븳떎怨 븣젮졇 엳떎18. 醫낇빀빐蹂대㈃ HIIT 썑 삁愿 湲곕뒫 媛쒖꽑 슫룞 以 諛쒖깮븳 쟾떒쓳젰怨 궛솕吏덉냼 빀꽦슚냼濡 씤븳 궛솕吏덉냼쓽 깮꽦씠 궡뵾꽭룷 湲곕뒫쓣 솢꽦솕븯뿬 삁愿 솗옣뒫씠 넂븘吏뒗 寃껋쑝濡 깮媛곷맂떎. 뵲씪꽌 蹂 뿰援щ뒗 RST媛 빟 11.3遺꾩씠씪뒗 吏㏃ 떆媛 닔뻾릺뒗 슫룞엫뿉룄 遺덇뎄븯怨 30遺꾧컙쓽 MICT留뚰겮 긽셿룞留 삁愿 궡뵾꽭룷 쓽議댁꽦 씠셿뒫뿉 媛쒖꽑쓣 蹂댁씤떎뒗 寃껋쓣 븣 닔 엳뿀쑝硫, RST뒗 삁愿 湲곕뒫 媛쒖꽑쓣 쐞븳 諛⑸쾿씠 맆 닔 엳쓣 寃껋쑝濡 깮媛곷맂떎.

蹂 뿰援 寃곌낵, RST 썑 떊泥 議곗꽦 媛쒖꽑 굹굹吏 븡븯떎. 씪諛섏쟻쑝濡 HIIT뒗 MICT 鍮꾧탳븯뿬 怨쇱껜以, 鍮꾨쭔븳 꽦씤쓣 긽쑝濡 泥댁諛 媛먯냼뿉 슚怨쇱쟻씤 듃젅씠떇쑝濡 븣젮졇 엳떎7. 洹몃윭굹 쑀쓽誘명븳 泥댁諛 媛먯냼瑜 쐞빐꽌뒗 理쒖냼 12二 씠긽쓽 HIIT 봽濡쒗넗肄쒖씠 븘슂븯떎뒗 硫뷀 遺꾩꽍 뿰援 寃곌낵媛 蹂닿퀬릺怨 엳쑝硫7, 듅엳 젙긽 泥댁쨷쓣 媛뽮퀬 엳뒗 꽦씤쓣 긽쑝濡 븳 12二 誘몃쭔쓽 HIIT 뿰援щ뱾 떊泥 議곗꽦쓣 湲띿젙쟻쑝濡 蹂솕떆궎吏 紐삵븳떎怨 룊媛븯떎. 蹂 뿰援щ뒗 젙긽 泥댁쨷쓣 긽쑝濡 6二 룞븞 떒湲곌컙 HIIT 봽濡쒗넗肄쒖쓣 궗슜뻽湲 븣臾몄뿉 젙긽 泥댁쨷쓣 긽쑝濡 븳 떒湲곌컙 HIIT 꽑뻾뿰援щ뱾怨 媛숈씠 쑀쓽븯寃 떊泥 議곗꽦쓽 媛쒖꽑쓣 씠걣뼱궡吏 紐삵븳 寃껋쑝濡 깮媛곷맂떎7. 븯吏留 鍮꾨쭔 긽옄瑜 긽쑝濡 떒湲곌컙 HIIT媛 떊泥 議곗꽦뿉꽌 쑀쓽븳 媛쒖꽑쓣 媛졇삩 꽑뻾뿰援ш 엳쑝誘濡7, 蹂 뿰援ъ쓽 떒湲곌컙 RST媛 鍮꾨쭔 긽옄뿉꽌 슚怨쇱쟻쑝濡 떊泥 議곗꽦쓣 쑀쓽븯寃 媛쒖꽑븯뒗吏뿉 븳 異붽쟻씤 뿰援ш 븘슂븷 寃껋쑝濡 깮媛곷맂떎.

RST뒗 MICT 鍮꾧탳뻽쓣 븣 삁븬 媛먯냼뿉 뜑 슚怨쇱쟻씠씪怨 蹂닿퀬릺怨 엳떎19. 洹몃윭굹 蹂 뿰援 寃곌낵뿉꽌뒗 몢 슫룞 삎깭 紐⑤몢 듃젅씠떇 씠썑 긽셿룞留 삁븬뿉꽌 쑀쓽븳 蹂솕媛 굹굹吏 븡븯떎. 泥닿퀎쟻 臾명뿄怨좎같뿉 뵲瑜대㈃ 듃젅씠떇 湲곌컙씠 湲몄닔濡 삁븬씠 뜑 슚怨쇱쟻쑝濡 媛먯냼븳떎怨 蹂닿퀬븯떎7. 蹂 뿰援щ뒗 6二 룞븞쓽 떒湲곌컙 듃젅씠떇 봽濡쒗넗肄쒖씠湲 븣臾몄뿉 꽑뻾뿰援щ뱾怨 긽諛섎릺뒗 寃곌낵媛 굹궃 寃껋쑝濡 깮媛곷맂떎. 듅엳 쑀궛냼 슫룞쓽 삁븬 媛먯냼 슚怨쇰뒗 씪諛섏쟻쑝濡 젙긽 踰붿쐞쓽 삁븬쓣 媛吏 젇 꽦씤뿉꽌뒗 옒 굹굹吏 븡怨, 以·끂뀈痢듭씠굹 샊 鍮꾨쭔, 怨좏삁븬쓣 媛吏 긽뿉꽌 옒 굹궃떎怨 蹂닿퀬릺怨 엳떎20. 蹂 뿰援щ뒗 듃젅씠떇 쟾 룊洹 삁븬씠 113/70 mm Hg씤 20–30쓽 嫄닿컯븳 꽦씤쓣 긽쑝濡 븯湲곗뿉 떒湲곌컙 봽濡쒗넗肄쒖뿉 뵲瑜 諛붾떏 슚怨쇰줈 삁븬 媛먯냼 슚怨쇨 쑀쓽븯寃 굹굹吏 븡 寃껋쑝濡 깮媛곷맂떎. 삉븳 泥댁쨷쓽 媛먯냼뒗 궡옣 吏諛⑹쓣 媛먯냼떆耳 씤뒓由 빆꽦쓣 媛쒖꽑븯怨 씠濡 씤븳 궙 닔以쓽 씤뒓由곗 쟾떊 삁愿 닔異뺤쓣 媛먯냼떆耳 삁븬쓣 궙異 닔 엳떎怨 븣젮졇 엳떎21. 洹몃윭굹 蹂 뿰援щ뒗 泥댁쨷 媛먯냼媛 굹굹吏 븡븯湲 븣臾몄뿉 씠윭븳 삁븬 媛먯냼 슚怨쇨 굹굹吏 븡 寃껋쑝濡 깮媛곷맂떎.

븞젙 떆 떖諛뺤닔 利앷뒗 떖삁愿 吏덊솚 궗留앸쪧 뼇쓽 긽愿愿怨꾨 媛吏꾨떎22. 蹂 뿰援 寃곌낵 6二쇨컙 듃젅씠떇 썑 몢 洹몃9 紐⑤몢뿉꽌 븞젙 떆 떖諛뺤닔媛 쑀쓽븯寃 媛먯냼븯떎. 씠뒗 HIIT媛 븞젙 떆 떖諛뺤닔瑜 쑀쓽븯寃 媛먯냼떆궓떎뒗 꽑뻾뿰援ъ 씪移섑븯뒗 寃곌낵씠떎23. 씠윭븳 HIIT쓽 븞젙 떆 떖諛뺤닔 媛먯냼 슚怨쇰뒗 넂 媛뺣룄(理쒕 떖諛뺤닔쓽 90% 씠긽)쓽 슫룞쑝濡 씤빐 利앷맂 떖옣 닔異뺣젰뿉 湲곗씤븳 븞젙 떆 떖諛뺤텧웾 利앷濡 꽕紐낇븷 닔 엳떎. Helgerud 벑23 嫄닿컯븳 꽦씤쓣 긽쑝濡 理쒕 떖諛뺤닔쓽 90%–95%뿉꽌 HIIT 썑 쑀쓽븯寃 떖諛뺤텧웾씠 利앷븯떎怨 蹂닿퀬븯떎. 蹂 뿰援ъ쓽 슫룞 媛뺣룄뒗 ‘all-out’쑝濡 理쒕 뙆썙 理쒕 냽룄瑜 궗슜뻽湲 븣臾몄뿉 꽑뻾뿰援ъ 媛숈 넂 媛뺣룄뿉 빐떦맂떎. 삉븳 洹쒖튃쟻씤 슫룞 삁븬쓽 긽듅怨 븯媛뺤쓣 媛먯븯뿬 援먭컧떊寃쎄낵 遺援먭컧떊寃쎄퀎瑜 議곗젅븯뒗 븬닔슜 諛섏궗(baroreceptor reflex) 誘쇨컧룄瑜 媛쒖꽑븷 닔 엳떎怨 蹂닿퀬릺怨 엳떎24. 씠윭븳 븬닔슜 諛섏궗뒗 슫룞 떆뿉 援먭컧떊寃 솢룞쓣 媛먯냼떆궎怨 遺援먭컧떊寃 솢룞쓣 利앷떆耳 떖諛뺤닔瑜 궙異붾뒗 옉슜쓣 븳떎怨 븣젮졇 엳쑝硫24, 理쒓렐 HIIT 썑 븞젙 떆 遺援먭컧떊寃 솢룞씠 利앷맂 뿰援щ뱾씠 蹂닿퀬릺怨 엳떎25. 씠윭븳 꽑뻾뿰援щ뱾怨 씪移섑븯뒗 寃곌낵濡 誘몃(뼱 蹂 븣 떒湲곌컙 RST뒗 븞젙 떆 떖諛뺤닔瑜 쑀쓽븯寃 궙異붿뼱 떖옣 諛 옄쑉떊寃 湲곕뒫쓣 媛쒖꽑븯뒗 슚怨쇱쟻씤 슫룞 諛⑹븞쑝濡 젣떆븷 닔 엳쓣 寃껋쑝濡 깮媛곷맂떎.

쑀궛냼 슫룞 뒫젰쓽 몴쟻씤 깮由ы븰쟻 吏몴씤 VO2peak뒗 슫룞 媛뺣룄媛 넂쓣닔濡 뜑 슚怨쇱쟻쑝濡 뼢긽맂떎怨 蹂닿퀬릺怨 엳쑝硫4, 씠뿉 怨좉컯룄 쑀궛냼 슫룞 봽濡쒗넗肄쒖씤 HIIT媛 二쇰ぉ諛쏄퀬 엳떎. 꽑뻾뿰援щ뒗 꽭뀡떦 15遺 誘몃쭔쓽 슜웾 HIIT뒗 떆媛 슚쑉쟻씤 듅꽦怨 떖룓湲곕뒫, 삁븬 諛 삁愿 湲곕뒫쓽 媛쒖꽑뿉 슚怨쇱쟻씠씪怨 蹂닿퀬븯怨 엳떎4. 洹몃윭굹 蹂 뿰援 寃곌낵뿉꽌뒗 VO2peak쓽 쑀쓽븳 媛쒖꽑씠 굹굹吏 븡븯떎. HIIT뿉꽌 쑀궛냼 뒫젰쓣 利앷븯湲 쐞빐꽌뒗 뒫룞쟻 쑕떇쓽 떆媛꾧낵 媛뺣룄瑜 怨좊젮빐빞 븯뒗뜲5, 씪諛섏쟻쑝濡 怨좉컯룄 슫룞 궗씠쓽 뒫룞쟻 쑕떇 씤궛겕젅븘떞(phosphocreatine, PCr)쓽 옱빀꽦, 닔냼 씠삩 셿異 벑 洹쇱쑁 궗 쉶蹂듭쓣 媛냽솕븯湲 쐞빐 삁瑜섎 利앷븯怨, VO2peak뿉 룄떖븯뒗 뜲 븘슂븳 떆媛꾩쓣 媛냽솕븯뿬 寃곌낵쟻쑝濡 쑀궛냼꽦 궗쓽 遺遺꾩쟻 湲곗뿬瑜 쑀룄븳떎怨 븣젮졇 엳떎26. 씠윭븳 뒫룞쟻 쑕떇쓽 媛뺣룄瑜 VO2peak쓽 45% 씠븯濡 닔뻾븯寃 릺硫 떎떆 怨좉컯룄 슫룞떆뿉 理쒕濡 닔뻾뒫젰쓣 諛쒗쐶븯湲 뼱젮썙吏怨 듃젅씠떇 以 VO2peak源뚯 룄떖븯湲 뼱젮썙吏꾨떎. 삉 1遺 誘몃쭔쓽 吏㏃ 쑕떇 떆媛꾩 PCr쓣 옱빀꽦븯湲곗뿉 異⑸텇븯吏 紐삵븯誘濡 理쒖냼 3–4遺꾩쓽 쑕떇 떆媛꾩쓣 媛뽯뒗 寃껋씠 諛붾엺吏곹븯떎怨 蹂닿퀬뻽떎27. 씠윭븳 꽑뻾 뿰援щ뱾쓣 넗濡 誘몃(뼱 蹂댁븯쓣 븣, 蹂 뿰援ъ쓽 RST 봽濡쒗넗肄쒖 30珥덉쓽 쑕떇 떆媛꾩쓣 媛議뚭퀬 씠뒗 怨좉컯룄 슫룞 떆 理쒕 닔뻾 뒫젰쑝濡 諛쒗쐶븯湲곗뿉 떆媛꾩쟻쑝濡 遺議깊뻽떎怨 깮媛곷릺硫 寃곌낵쟻쑝濡 쑀궛냼꽦 뒫젰쓽 媛쒖꽑씠 굹굹吏 븡 寃껋쑝濡 蹂댁씤떎.

洹몃윭굹 理쒕 슫룞遺븯寃궗 떆 깉吏꾧퉴吏 냼슂맂 슫룞 떆媛꾩뿉꽌뒗 몢 洹몃9 紐⑤몢 듃젅씠떇 썑 넻怨꾩쟻쑝濡 쑀쓽븳 媛쒖꽑씠 엳뿀떎. Gleser Vogel28 쑀궛냼 슫룞씠 슫룞 떆媛꾩쓣 利앷떆궓 寃껋쓣 蹂닿퀬븯硫댁꽌 씠뒗 쑀궛냼 슫룞 뒫젰쓽 뼢긽쓣 쓽誘명븳떎怨 븯쑝硫, Hickson 벑29 怨좉컯룄 쑀궛냼 슫룞씠 슫룞 떆媛꾩쓣 쑀쓽븯寃 利앷떆耳곕떎怨 蹂닿퀬뻽떎. 理쒕 슫룞遺븯 떆媛꾩씠 1遺 媛먯냼븷 븣 怨좏삁븬쓽 쐞뿕씠 19% 利앷븳떎怨 二쇱옣븳 Cooney 벑30쓽 뿰援ъ 媛숈 留λ씫뿉꽌, 蹂 뿰援ъ쓽 RST뒗 슫룞 吏냽 떆媛 吏몴瑜 씠슜븳 쑀궛냼꽦 슫룞 뒫젰쓣 뼢긽떆궎誘濡 엫긽쟻쑝濡 쓽쓽媛 엳쓣 寃껋쑝濡 깮媛곷맂떎.

蹂 뿰援 寃곌낵, 臾댁궛냼꽦 理쒕 뙆썙뒗 RST 洹몃9뿉꽌 빟 11%, MICT 洹몃9뿉꽌 빟 7% 利앷릺뿀떎. 씠뒗 떒湲곌컙 RST媛 理쒕 臾댁궛냼꽦 뙆썙瑜 利앷떆궓 떎닔쓽 꽑뻾뿰援ъ 씪移섑븯뒗 寃곌낵씠떎31. 蹂 뿰援ъ뿉꽌뒗 臾댁궛냼꽦 理쒕 뙆썙 媛쒖꽑 슚怨쇱뿉 븳 湲곗쟾 뿰援щ 닔뻾븯吏 븡븯쑝굹, 꽑뻾뿰援щ 넗濡 떎쓬怨 媛숈 湲곗쟾쓣 쑀異뷀븯뿬 젣떆븷 닔 엳떎. 怨좉컯룄 슫룞 떆뿉 빐떦 怨쇱젙쓣 二 뿉꼫吏 떆뒪뀥쑝濡 궗슜븯寃 릺뒗뜲, 씠븣 빐떦 슚냼씤 phosphofructokinase (PFK) 諛 hexokinase (Hex)쓽 솢꽦 利앷媛 씪뼱궃떎. PFK뒗 솢꽦 떆뿉 H竊뗭쓣 뼲젣븯뒗 슚怨쇨 엳쑝硫32, PFK쓽 솢꽦怨 愿젴맂 닔뻾 뒫젰 洹쇱쑁씠 뜑 궛꽦솕맖뿉 뵲씪 넂븘吏꾨떎怨 븣젮졇 엳떎33. 삉븳 HIIT뒗 삁옣怨 洹쇱쑁뿉꽌 룷룄떦 냽룄쓽 겙 利앷瑜 룞諛섑븯硫, 뵲씪꽌 Hex 솢꽦씠 利앷븯硫댁꽌 슫룞怨 쑕떇 떆媛 룞븞 룷룄떦 솢슜瑜좎씠 利앷븷 媛뒫꽦씠 넂븘吏꾨떎. 뵲씪꽌 RST쓽 怨좉컯룄 슫룞 以묒뿉 利앷맂 PFK Hex쓽 솢꽦 利앷媛 臾댁궛냼꽦 理쒕 뙆썙瑜 利앷떆궓 寃껋쑝濡 깮媛곷맂떎.

씠긽쓽 寃곌낵瑜 醫낇빀빐蹂대㈃, 蹂 뿰援ъ뿉꽌 6二쇨컙 RST뒗 MICT留뚰겮 20–30 젇 꽦씤쓽 쑀·臾댁궛냼꽦 뒫젰 媛쒖꽑뿉 슚怨쇱쟻엫쓣 엯利앺븯떎. 洹몃윭굹 蹂 뿰援щ뒗 떎쓬怨 媛숈 젣븳젏씠 엳떎. 泥レ㎏, 蹂 뿰援щ뒗 嫄닿컯븳 꽦씤留뚯쓣 긽쑝濡 븯湲 븣臾몄뿉 떎瑜 뿰졊 諛 吏덈퀝씠 엳뒗 긽옄뿉꽌뒗 떎瑜 寃곌낵媛 굹궇 닔 엳떎. 몮吏, 蹂 뿰援щ뒗 뿬꽦 긽옄뱾쓽 삁愿 湲곕뒫뿉 쁺뼢쓣 誘몄튌 닔 엳뒗 뿬꽦 샇瑜대が 二쇨린瑜 넻젣븯吏 紐삵븯떎. 뀑吏, 蹂 뿰援щ뒗 媛곴컖쓽 슫룞 봽濡쒓렇옩쓽 슚怨쇱뿉 븳 李⑥씠瑜 寃利앺븯湲 쐞븿쑝濡 슫룞뿉 븳 뿉꼫吏 냼鍮꾨웾怨 슫룞 떆媛꾩쓣 씪移섏떆궎吏 紐삵븯떎. 꽬吏, 蹂 뿰援щ뒗 긽옄쓽 떇깮솢 뒿愿 諛 닔硫 떆媛꾩 넻젣븯吏 紐삵븯떎. 洹몃윭굹 蹂 뿰援щ뒗 HIIT 以묒뿉꽌룄 媛옣 吏㏃ 봽濡쒗넗肄쒖씤 RST媛 떒湲곌컙留뚯쑝濡쒕룄 삁愿 湲곕뒫 媛쒖꽑 슚怨쇨 엳떎뒗 寃껋쓣 利앸챸븳 泥 踰덉㎏ 援궡 뿰援щ씪뒗 젏뿉 쓽쓽媛 엳떎.

寃곕줎쟻쑝濡, 蹂 뿰援ъ뿉꽌 6二쇨컙 RST뒗 MICT 쑀궗븯寃 삁愿 湲곕뒫 諛 쑀·臾댁궛냼꽦 슫룞뒫젰 媛쒖꽑뿉 湲띿젙쟻씤 쁺뼢쓣 二쇰뒗 寃껋쑝濡 굹궗떎. 떒湲곌컙 슫룞쓽 슚怨쇰 紐낇솗엳 뙆븙븯湲 쐞빐 異뷀썑 슫룞 湲곌컙怨 쑀삎 諛 媛뺣룄, 洹몃━怨 떒湲곌컙 슫룞쓽 슚怨 吏냽꽦뿉 븳 異붽쟻씤 뿰援ш 븘슂븷 寃껋씠씪怨 깮媛곷맂떎. 븯吏留 씠踰 뿰援ъ쓽 寃곌낵뱾濡 蹂 븣 떒湲곌컙쓽 吏㏃ 슫룞 떆媛꾩쑝濡쒕룄 삁愿 湲곕뒫怨 쑀·臾댁궛냼꽦 슫룞 뒫젰뿉 湲띿젙쟻씤 쁺뼢쓣 以 닔 엳湲 븣臾몄뿉 諛붿걶 쁽씤뱾뿉寃 쟻洹뱀쟻쑝濡 RST瑜 沅뚯쑀븷 닔 엳쓣 寃껋씠硫, 삉븳 븵쑝濡 떎뼇븳 긽뿉 븳 留롮 뿰援ъ 寃利앹씠 븘슂븷 寃껋씠떎.

Conflict of Interest

Sae Young Jae is the Editor-in-Chief of The Korean Journal of Sports Medicine and was not involved in the review process of this article. All authors have no other conflicts of interest to declare.

References
  1. Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA 2018;320:2020-8.
    Pubmed KoreaMed CrossRef
  2. Korea Disease Control and Prevention Agency (KDCA). Korea National Health and Nutrition Examination Survey [Internet]. KDCA; 2022 [cited 2024 Jan 22].
  3. Ministry of Culture, Sports and Tourism (MCST), Republic of Korea. 2017 Survey on participation in sports and exercise for daily life of Koreans [Internet]. MCST; 2018 [cited 2024 Jan 22].
  4. Yin M, Li H, Bai M, et al. Is low-volume high-intensity interval training a time-efficient strategy to improve cardiometabolic health and body composition? A meta-analysis. Appl Physiol Nutr Metab 2024;49:273-92.
    Pubmed CrossRef
  5. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I. Cardiopulmonary emphasis. Sports Med 2013;43:313-38.
    Pubmed CrossRef
  6. Satiroglu R, Lalande S, Hong S, Nagel MJ, Coyle EF. Four-second power cycling training increases maximal anaerobic power, peak oxygen consumption, and total blood volume. Med Sci Sports Exerc 2021;53:2536-42.
    Pubmed CrossRef
  7. Batacan RB, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med 2017;51:494-503.
    Pubmed CrossRef
  8. Hasegawa N, Fujie S, Horii N, et al. Effects of different exercise modes on arterial stiffness and nitric oxide synthesis. Med Sci Sports Exerc 2018;50:1177-85.
    Pubmed CrossRef
  9. Malin SK, Gilbertson NM, Eichner NZ, Heiston E, Miller S, Weltman A. Impact of short-term continuous and interval exercise training on endothelial function and glucose metabolism in prediabetes. J Diabetes Res 2019;2019:4912174.
    Pubmed KoreaMed CrossRef
  10. Herbert P, Sculthorpe N, Baker JS, Grace FM. Validation of a six second cycle test for the determination of peak power output. Res Sports Med 2015;23:115-25.
    Pubmed CrossRef
  11. Karvonen J, Vuorimaa T. Heart rate and exercise intensity during sports activities. Practical application. Sports Med 1988;5:303-11.
    Pubmed CrossRef
  12. Thijssen DH, Bruno RM, van Mil AC, et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur Heart J 2019;40:2534-47.
    Pubmed CrossRef
  13. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 2002;346:793-801.
    Pubmed CrossRef
  14. Beaver WL, Wasserman K. Muscle RQ and lactate accumulation from analysis of the VCO2-VO2 relationship during exercise. Clin J Sports Med 1991;1:7-34.
    CrossRef
  15. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging 2010;26:631-40.
    Pubmed CrossRef
  16. Maeda S, Miyauchi T, Kakiyama T, et al. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 2001;69:1005-16.
    Pubmed CrossRef
  17. Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation 2010;122:1221-38.
    Pubmed CrossRef
  18. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994;74:349-53.
    Pubmed CrossRef
  19. Adamson S, Kavaliauskas M, Yamagishi T, Phillips S, Lorimer R, Babraj J. Extremely short duration sprint interval training improves vascular health in older adults. Sport Sci Health 2019;15:123-31.
    CrossRef
  20. McDonnell BJ, Maki-Petaja KM, Munnery M, et al. Habitual exercise and blood pressure: age dependency and underlying mechanisms. Am J Hypertens 2013;26:334-41.
    Pubmed CrossRef
  21. Fantin F, Giani A, Zoico E, Rossi AP, Mazzali G, Zamboni M. Weight loss and hypertension in obese subjects. Nutrients 2019;11:1667.
    Pubmed KoreaMed CrossRef
  22. Kannel WB, Kannel C, Paffenbarger RS, Cupples LA. Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J 1987;113:1489-94.
    Pubmed CrossRef
  23. Helgerud J, H첩ydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 2007;39:665-71.
    Pubmed CrossRef
  24. Laterza MC, de Matos LD, Trombetta IC, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension 2007;49:1298-306.
    Pubmed CrossRef
  25. Ramos JS, Dalleck LC, Borrani F, et al. High-intensity interval training and cardiac autonomic control in individuals with metabolic syndrome: a randomised trial. Int J Cardiol 2017;245:245-52.
    Pubmed CrossRef
  26. Dorado C, Sanchis-Moysi J, Calbet JA. Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can J Appl Physiol 2004;29:227-44.
    Pubmed CrossRef
  27. Belcastro AN, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J Appl Physiol 1975;39:932-6.
    Pubmed CrossRef
  28. Gleser MA, Vogel JA. Endurance exercise: effect of work-rest schedules and repeated testing. J Appl Physiol 1971;31:735-9.
    Pubmed CrossRef
  29. Hickson RC, Bomze HA, Holloszy JO. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol Respir Environ Exerc Physiol 1977;42:372-6.
    Pubmed CrossRef
  30. Cooney MT, Vartiainen E, Laatikainen T, Juolevi A, Dudina A, Graham IM. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J 2010;159:612-9.
    Pubmed CrossRef
  31. Jakeman J, Adamson S, Babraj J. Extremely short duration high-intensity training substantially improves endurance performance in triathletes. Appl Physiol Nutr Metab 2012;37:976-81.
    Pubmed CrossRef
  32. Chasiotis D, Sahlin K, Hultman E. Regulation of glycogenolysis in human muscle at rest and during exercise. J Appl Physiol Respir Environ Exerc Physiol 1982;53:708-15.
    Pubmed CrossRef
  33. MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985) 1998;84:2138-42.
    Pubmed CrossRef